So sánh S với 3, biết S=\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\)
So sánh S với 3, biết :
\(S=\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\)
S= \(\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+2}{2011}\)
= 3 + \(\frac{2}{2011}-\frac{1}{2012}-\frac{1}{2013}\)
có \(\frac{1}{2011}>\frac{1}{2012}\)và \(\frac{1}{2011}>\frac{1}{2013}\)
\(\Rightarrow S>3\)
mai mink phải nộp rồi
may quá! Thanks bạn rất nhiều
So sánh S với 3, biết : \(S=\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\)
Bài giải :
Theo đề bài ra ta có : n. (n - 1) : 2 = 435
=> n. (n - 1) = 435 . 2 = 870
=> n.(n-1) = 30. 29
Vậy n = 30.
So sánh $\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}$ với 3
Có : \(\frac{2011}{2012}=\frac{2012-1}{2012}=1-\frac{1}{2012}\)
Có : \(\frac{2012}{2013}=\frac{2013-1}{2013}=1-\frac{1}{2013}\)
Có : \(\frac{2013}{2011}=\frac{2011+2}{2011}=1+\frac{2}{2011}\)
Cộng vế với vế ta có : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}=1+1+1-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)=3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)\)
Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}>0\) nên \(3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)<3\)
Vậy \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}<3\)
Cho S = \(\frac{2010}{2011}\)+\(\frac{2011}{2012}\)+\(\frac{2012}{2013}\)+\(\frac{2013}{2010}\) .
So sánh S với 4
Cho s= 2010/2011+2011/2012+2012/2013/2013/2010
Cho s=1
AM-GM:\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2010}\ge4\sqrt[4]{\frac{2010.2011.2012.2013}{2011.2012.2013.2010}}=4\sqrt[4]{1}=4\)
\(\Rightarrow S\ge4\)
^^
\(S=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2010}\ge4^4\sqrt[]{\frac{2010.2011.2012.2013}{2011.2012.2013.2010}=4}\)\(4^4\sqrt[]{1}=4\)
so sánh \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\) với 3
Bài nãy sai rồi, cho mình làm lại nha:
\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}\)
\(=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{1}{2011}\)
Vì: \(\frac{1}{2011}>\frac{1}{2012}>\frac{1}{2013}\Rightarrow\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2012}+\frac{1}{2012}>0\)
\(\Rightarrow\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}>3\)
Nên \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)
Áp dụng tỉ dãy số bằng nhau, ta có:
\(\frac{2011+2012-2013}{2012+2013-2011}=\frac{2011-2012+2013}{2012+2013-2011}=\frac{2011-2012+2013}{-2011-2012+2013}=\left(-1\right)\)
So sánh P và Q biết:
P=\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
Q = \(\frac{2010+2011+2012}{2011+2012+2013}\)
Ta có:
Q=2010/2011+2012+2013+2011/2011+2012+2013+2012/2011+2012+2013
Mà 2010/2011+2012+2013<2010/2011
2011/2011+2012+2013<2011/2012
2012/2011+2012+2013<2012/2013
=>Q<P
So sánh P và Q biết
P=\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\) và Q=\(\frac{2010+2011+2012}{2011+2012+2013}\)
\(\frac{2010}{2011}\)> \(\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}\)> \(\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}\)> \(\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)> \(\frac{2010+2011+2012}{2011+2012+2013}\)
=> P > Q
so sánh P và Q biết P=\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)và Q=\(\frac{2010+2011+2012}{2011+2012+2013}\)
P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
Q = \(\frac{2010+2011+2012}{2011+2012+2013}\) = \(\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Vì: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
P > Q
Không quy đồng, hãy so sánh:\(C=\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\)với 3