Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn trọng đức
Xem chi tiết
Dương Hoàng Ngân
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 6 2019 lúc 22:05

a.

Theo định lý Thales,ta có:

 \(OE//BC\) nên \(\frac{AE}{EB}=\frac{AO}{OC}\left(1\right)\)

\(OF//CD\) nên \(\frac{AF}{FD}=\frac{AO}{OC}\left(2\right)\)

Từ (1);(2) suy ra \(\frac{AE}{EB}=\frac{AF}{FD}\Rightarrow FE//BD\) theo ĐL Thales đảo.

b.

Theo định lý Thales,ta có:

\(OG//AB\) nên \(\frac{AO}{OC}=\frac{BG}{GC}\left(3\right)\)

\(OH//AD\) nên \(\frac{AO}{OC}=\frac{DH}{HC}\left(4\right)\)

Từ (3);(4) suy ra:\(\frac{BG}{GC}=\frac{DH}{HC}\Rightarrow BG\cdot CH=CG\cdot DH\left(đpcm\right)\)

Nguyễn Tuấn Minh
Xem chi tiết
Y
15 tháng 6 2019 lúc 17:20

+ \(\left\{{}\begin{matrix}AB//NF\\CD//ME\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{OMB}=\widehat{ONF}\\\widehat{OME}=\widehat{ONC}\end{matrix}\right.\)

\(\Rightarrow360^o-\left(\widehat{ONF}+\widehat{ONC}\right)=360^o-\left(\widehat{OMB}+\widehat{OME}\right)\)

\(\Rightarrow\widehat{FNC}=\widehat{EMB}\)

+ AB // NF \(\Rightarrow\frac{NF}{MB}=\frac{ON}{MO}\)

+ CD // ME \(\Rightarrow\frac{NC}{ME}=\frac{ON}{OM}=\frac{NF}{MB}\)

\(\Rightarrow\frac{NC}{NF}=\frac{ME}{MB}\)

+ ΔBME ∼ ΔFNC ( c.g.c )

\(\Rightarrow\widehat{BEM}=\widehat{FCN}\)

+ ME // CD \(\Rightarrow\widehat{MEA}=\widehat{ACN}\)

\(\Rightarrow\widehat{MEA}+\widehat{BEM}=\widehat{ACN}+\widehat{NCF}\)

\(\Rightarrow\widehat{BEA}=\widehat{ACF}\) => BE // CF

Thanh Bình Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 14:23

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB\(\sim\)ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)

b: Xét ΔCAD có OE//AD

nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)

Xét ΔBDC có OF//BC

nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)

=>DE=CF

 

Đoàn Phương Linh
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết
in ngoc
Xem chi tiết
Dao Hong Quan
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
13 tháng 9 2023 lúc 22:36

a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:

\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)

Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Xét tam giác \(ABD\) có:

\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Theo định lí Thales đảo suy ra \(EF//BD\).

b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:

\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)

Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:

\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)

Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)

Theo định lí Thales đảo suy ra \(GH//BD\).

Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:

\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 22:37

a: Xét ΔADC có OF//DC

nên AF/AD=AO/AC

Xét ΔABC có EO//BC

nên AE/AB=AO/AC

=>AF/AD=AE/AB

=>EF//BD

b: OH//AD

=>CH/CD=CO/CA

OG//AB

=>CG/BC=CO/CA

=>CG/BC=CH/CD

=>GH//BD

=>CH/DH=CG/BG

=>CH*BG=DH*CG