Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Xuân Nghĩa (Xin...
16 tháng 1 2021 lúc 19:21

a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

b) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

c) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

Camerman
15 tháng 7 lúc 10:44

Chỉ voi

Minz Ank
Xem chi tiết
Nguyễn Xuân Nghĩa (Xin...
16 tháng 1 2021 lúc 19:20

b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5

c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

d) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

e) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

Camerman
15 tháng 7 lúc 10:35

Chỉ

Lil Học Giỏi
Xem chi tiết
Akai Haruma
19 tháng 10 2019 lúc 10:10

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

Khách vãng lai đã xóa
Akai Haruma
3 tháng 10 2019 lúc 14:53

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

Khách vãng lai đã xóa
Khánh Khánh
Xem chi tiết
Nguyễn Thái Anh
Xem chi tiết
Huỳnh Thái Thành
Xem chi tiết
trang chelsea
26 tháng 1 2016 lúc 19:16

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

Nguyễn Tuấn
26 tháng 1 2016 lúc 19:37

de sai phai la 25n4

Nguyễn Tuấn
26 tháng 1 2016 lúc 19:38

vào trang http://giaoan.co/giao-an/chuyen-de-ve-ly-thuyet-toan-chia-het-7917/ tìm bài 5

vu anh duc
Xem chi tiết
Khanh Nguyễn Ngọc
9 tháng 9 2020 lúc 9:13

Bài này khó quá mình không giải trực tiếp được, thoi đi quy nạp nha:

Với \(n=0\Rightarrow2^{2n+2}+24n+14=18⋮18\)

Với \(n=1\Rightarrow2^{2n+2}+24n+14=54⋮18\)

+) Giả sử giả thiết đúng tới \(n=k,k\inℕ,n>k>2\Rightarrow2^{2k+2}+24k+14⋮18\)

+) Cần chứng minh giả thiết đúng với \(n=k+1:\)

Xét \(2^{2\left(k+1\right)+2}+24\left(k+1\right)+14⋮18\)

\(\Leftrightarrow2^{2+\left(2k+2\right)}+24k+24+14⋮18\)

\(\Leftrightarrow2^2.2^{2k+2}+24k+14+24⋮18\)

\(\Leftrightarrow\left(2^{2k+2}+24k+14\right)+3.2^{2k+2}+24⋮18\)(1)

Vì \(\left(2^{2k+2}+24k+14\right)⋮18\)nên (1)\(\Leftrightarrow3.2^{2k+2}+24⋮18\)(2)

Vì \(3.2^{2k+2}+24⋮6\)nên (2)\(\Leftrightarrow2^{2k+1}+4⋮3\)

Xét \(2^{2k+1}=\left(3-1\right)^{2k+1}\)Vì (2k+1) là số lẻ nên\(\left(3-1\right)^{2k+1}\)có dạng 3A-1 (tức là chia 3 dư 2 đấy !)

(Điều này có thể được chứng minh bằng cách xét số dư khi chia lũy thừa của 2 cho 3, còn để chứng minh chặt chẽ thì đợi lên lớp 11 học nhị thức Newton nha !!)

Vậy (2)\(\Leftrightarrow3A-1+4⋮3\Leftrightarrow3A+3⋮3\)--->đúng \(\forall k,n>k>2\)

Vậy giả thiết đúng \(\forall n\inℕ\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
9 tháng 9 2020 lúc 11:57

Chứng minh quy nạp giống bạn Ngọc 

.Giả thiêt đúng với n = 0 

G/s giả thiết đúng với n 

Cần chứng minh giả thiết đúng với n+1

Ta có: \(2^{2\left(n+1\right)+2}+24\left(n+1\right)+14\)

\(=2^{2n+2}.4+24n+24+14\)

\(=\left(2^{2n+2}+24n+14\right)+\left(3.2^{2n+2}+24\right)\)

Vì \(2^{2n+2}+8\equiv\left(-1\right)^{2n+2}+8\equiv9\equiv0\left(mod9\right)\)

\(\Rightarrow3.2^{2n+2}+24⋮9\) và dĩ nhiên là \(3.2^{2n+2}+24⋮2\) mà ( 2; 9) = 1

\(\Rightarrow3.2^{2n+2}+24⋮18\)

Theo điều G/s \(\left(2^{2n+2}+24n+14\right)⋮18\)

=> \(\left(2^{2n+2}+24n+14\right)+\left(3.2^{2n+2}+24\right)⋮18\)

=> \(2^{2\left(n+1\right)+2}+24\left(n+1\right)+14⋮18\)

=> giả thiết đúng với n + 1 

Vậy giả thiết đúng với mọi n 

Khách vãng lai đã xóa
Mun SiNo
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

Lấp La Lấp Lánh
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:16

\(n^3+3n^2+2n\)

\(=n\left(n^2+3n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

Bi Bi
Xem chi tiết
Khôi Bùi
25 tháng 1 2019 lúc 13:04

\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)

\(=3n^3+9n^2+15n+9\)

\(=3n^2\left(n+1\right)+6n\left(n+1\right)+9\left(n+1\right)\)

\(=3\left(n+1\right)\left(n^2+2n+3\right)\)

\(=3\left(n+1\right)\left[n\left(n+2\right)+3\right]\)

\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)

Do \(n,n+1,n+2\) là 3 số tự nhiên liên tiếp

\(\Rightarrow3n\left(n+1\right)\left(n+2\right)⋮9\)

\(\Rightarrow A=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)⋮9\left(đpcm\right)\)

P/s : Bài này bạn có thể sử dụng phương pháp quy nạp

làm như vậy sẽ nhanh hơn