Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bi Bi

Chứng minh rằng A=n3+(n+1)3+(n+2)3 chia hết cho 9 với mọi n ϵ N*

Khôi Bùi
25 tháng 1 2019 lúc 13:04

\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)

\(=3n^3+9n^2+15n+9\)

\(=3n^2\left(n+1\right)+6n\left(n+1\right)+9\left(n+1\right)\)

\(=3\left(n+1\right)\left(n^2+2n+3\right)\)

\(=3\left(n+1\right)\left[n\left(n+2\right)+3\right]\)

\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)

Do \(n,n+1,n+2\) là 3 số tự nhiên liên tiếp

\(\Rightarrow3n\left(n+1\right)\left(n+2\right)⋮9\)

\(\Rightarrow A=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)⋮9\left(đpcm\right)\)

P/s : Bài này bạn có thể sử dụng phương pháp quy nạp

làm như vậy sẽ nhanh hơn


Các câu hỏi tương tự
Lil Học Giỏi
Xem chi tiết
Lil Học Giỏi
Xem chi tiết
Đặng Ngọc Hà
Xem chi tiết
Hạ Vũ
Xem chi tiết
Lining
Xem chi tiết
Bolbbalgan4
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
therese hương
Xem chi tiết
do khanh hoa
Xem chi tiết