Tìm đa thức M biết (2x^2-xy^2+1)-M=-x^3+3x^2y+2
Bài 1. (2 điểm)
a) Thực hiện phép chia đa thức $A = 5x^3y^2 - 3x^2y + xy$ cho $xy$.
b) Cho đa thức $M = x^3 - x^2y + 2xy + 3$ và $P = 3x^3 - 2x^2y - xy + 3$. Tìm đa thức $A$ biết $A + 2M = P$.
a) (5x³y² - 3x²y + xy) : xy
= 5x³y² : xy + (-3x²y : xy) + xy : xy
= 5x²y - 3x + 1
b) A + 2M = P
A = P - 2M
= 3x³ - 2x²y - xy + 3 - 2.(x³ - x²y + 2xy + 3)
= 3x³ - 2x²y - xy + 3 - 2x³ + 2x²y - 4xy - 6
= (3x³ - 2x³) + (-2x²y + 2x²y) + (-xy - 4xy) + (3 - 6)
= x³ - 5xy - 3
Vậy A = x³ - 5xy - 3
a) \(A:xy\)
\(=\left(5x^3y^2-3x^2y+xy\right):xy\)
\(=5x^3y^2:xy-3x^2y:xy+xy:xy\)
\(=5x^2y-3x+1\)
b) \(A+2M=P\)
\(\Rightarrow A+2\cdot\left(x^3-x^2y+2xy\right)=3x^3-2x^2y-xy+3\)
\(\Rightarrow A+2x^3-2x^2y+4xy=3x^3-2x^2y-xy+3\)
\(\Rightarrow A=3x^3-2x^3-2x^2y+2x^2y-xy-4xy+3\)
\(\Rightarrow A=x^3-4xy+3\)
a) (5x³y² - 3x²y + xy) : xy
= 5x³y² : xy + (-3x²y : xy) + xy : xy
= 5x²y - 3x + 1
b) A + 2M = P
A = P - 2M
= 3x³ - 2x²y - xy + 3 - 2.(x³ - x²y + 2xy + 3)
= 3x³ - 2x²y - xy + 3 - 2x³ + 2x²y - 4xy - 6
= (3x³ - 2x³) + (-2x²y + 2x²y) + (-xy - 4xy) + (3 - 6)
= x³ - 5xy - 3
Vậy A = x³ - 5xy - 3
bài 1: tìm đa thức M biết
a, \(M+x^2\)\(-3xy-y^2\)=\(2x^2\) \(-y^2+xy\)
b,\(x^2y^2-2x^2y^3+2x^2-y^3-P=x^2y^3-3x^2y^2-x^2\)
bài 2: tìm nghiệm của các đa thức sau
a, \(5\left(x-2\right)-2\left(x+3\right)\)
b, \(5x^2-125\)
c,\(2x^2-x-3\)
giúp mik vs ạ
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2
N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2
a)Thu gọn 2 đa thức trên rồi tìm bậc
b)tính M+N,M-N
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
tìm đa thức M biết
a,M-(1/2x^2y-5xy^2+x^3-y^3)=3/4xy^2-2x^2y+2y^3-1/3x^2
a: M=3/4xy^2-2x^2y+2y^3-1/3x^2+1/2x^2y-5xy^2+x^3-y^3
=y^3-1/3x^2+x^3-17/4xy^2-3/2x^2y
1) tìm các giá trị không thích hợp của x;y trong các giá trị sau
a) 3x^2y+5/(x-1)(y+2) b) 5xy/x-xy
2) viết một đa thức một biến có 2 hang từ mà hệ số cao nhất là 5 hệ số tự do là -1
3) tìm đa thức M và N biết
a) m+(-x^2+3x^2y)=2x^2-2x^2y-y^2
b) (7xyz-15x^2yz^2+xy^3)+n=0
cho 2 đa thức M =-xy^2+3x^2y -x^2y^2
N=1/2x2y-xy^2 + -2/3x^2y^2
a.Tính M+ N
b.Tìm Q biết N-Q=M
c ,Tính giá trị đa thức Q tại x=-1 y=1/2
a: Ta có: M+N
\(=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2+\dfrac{-2}{3}x^2y^2\)
\(=-2xy^2+\dfrac{7}{2}x^2y-\dfrac{5}{3}x^2y^2\)
b: Ta có: N-Q=M
nên \(Q=N-M\)
\(=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2\)
\(=\dfrac{-5}{2}x^2y+\dfrac{1}{3}x^2y^2\)
a) \(M+N=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2=\dfrac{7}{2}x^2y-2xy^2-\dfrac{5}{3}x^2y^2\)b) \(N-Q=M\Rightarrow Q=N-M=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2\)c) \(Q=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2=-\dfrac{5}{2}.\left(-1\right)^2.\dfrac{1}{2}+\dfrac{1}{3}.\left(-1\right)^2.\left(\dfrac{1}{2}\right)^2=-\dfrac{7}{6}\)
c: Thay x=-1 và \(y=\dfrac{1}{2}\) vào Q, ta được:
\(Q=-\dfrac{5}{2}\cdot1\cdot\dfrac{1}{2}+\dfrac{1}{3}\cdot1\cdot\dfrac{1}{4}\)
\(=-\dfrac{5}{4}+\dfrac{1}{12}\)
\(=-\dfrac{15}{12}+\dfrac{1}{12}=-\dfrac{14}{12}=-\dfrac{7}{6}\)
cho biết
\(M+\left(2x^3+3x^2y-3xy^2+xy-1\right)=3x^3+3x^2y-3xy^2+xy\)
a) tìm đa thức M
b) Vs giá trị nào của x thì m = 9
a) \(M=\left(3x^3+3x^2y-3xy^2+xy\right)-\left(2x^3+3x^2y-3xy^2+xy-1\right)\)
\(M=3x^3+3x^2y-3xy^2+xy-2x^3-3x^2y+3xy^2-xy+1\)
\(M=\left(3x^3-2x^3\right)+\left(3x^2y-3x^2y\right)+\left(3xy^2-3xy^2\right)+\left(xy-xy\right)+1\)\(M=x^3+1\)
b)\(M=9\Leftrightarrow x^3+1=9\)
\(x^3=8\)
\(x^3=2^3\Rightarrow x=2\)
Vậy với x=2 thì M=9
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Bài 10: Cho biết: M+\((2x^3+3x^2y-3xy^2+xy+1)=3x^3+3x^2y-3xy^2+xy\)
a) Tìm đa thức M
b) Với giá trị nào của x thì M=-28
a/ Ta có :
\(M=3x^3+3x^2y-3xy^2+xy-\left(2x^3+3x^2y-3xy^2+xy+1\right)\)
\(=x^3-1\)
Vậy...
b/ Ta có :
\(M=-28\)
\(\Leftrightarrow x^3-1=-28\)
\(\Leftrightarrow x^3=-27\)
\(\Leftrightarrow x=-3\)
Vậy.....
a/ Ta có :
M=3x3+3x2y−3xy2+xy−(2x3+3x2y−3xy2+xy+1)M=3x3+3x2y−3xy2+xy−(2x3+3x2y−3xy2+xy+1)
=x3−1=x3−1
Vậy...
b/ Ta có :
M=−28M=−28
⇔x3−1=−28⇔x3−1=−28
⇔x3=−27