Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Vương Huy Hoàng Lượng
Xem chi tiết
Nguyễn Huy Trường Lưu
Xem chi tiết

\(A=\left|x+1\right|-3\\ min_A=-3.khi.x+1=0\Leftrightarrow x=-1\\ B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\\ max_B=-\dfrac{1}{4}.khi.\left(x-\dfrac{3}{7}\right)=0\Leftrightarrow x=\dfrac{3}{7}\)

when the imposter is sus
22 tháng 9 2023 lúc 14:48

a)

A = |x + 1| - 3 ≥ 0 - 3 = -3

Dấu "=" xảy ra khi x + 1 = 0 hay x = -1

Do đó A đạt GTNN là -3 khi x = -1

b)

\(B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\le-0-\dfrac{1}{4}=-\dfrac{1}{4}\)

Dấu "=" xảy ra khi khi \(x-\dfrac{3}{7}=0\) hay \(x=\dfrac{3}{7}\)

Do đó B đạt GTLN là \(-\dfrac{1}{4}\) khi \(x=\dfrac{3}{7}\)

Nguyễn Quỳnh Giang
Xem chi tiết
Trần Việt Linh
12 tháng 12 2016 lúc 21:55

\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)

Vì: \(\left(x-2\right)^2\ge0\)

=> \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x=2

\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)

Vì: \(2\left(x+3\right)^2\ge0\)

=> \(2\left(x+3\right)^2-19\ge-19\)

Vậy GTNN của B là -19 khi x=-3

\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)

=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)

Nguyễn Phương Dung
Xem chi tiết
๓เภђ ภوยץễภ ђảเ
27 tháng 9 2020 lúc 19:55

Ta có  \(\left|x+1\right|\ge0\forall x\Rightarrow\left|x+1\right|+2\ge2\)

Hay \(A\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTNN của A=2 <=> x=-1

Ta có  \(\left|x+1\right|\ge0\forall x\Rightarrow3-\left|x+1\right|\le3\)

Hay \(B\le3\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTLN của B=3 <=> x=-1

Ta có  \(\hept{\begin{cases}\left|x+1\right|\ge x+1\left(1\right)\\\left|5-x\right|\ge5-x\left(2\right)\end{cases}}\)

Từ (1);(2) => \(\left|x+1\right|+\left|5-x\right|\ge x+1+5-x=6\)

Hay \(C\ge6\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le5\end{cases}\Leftrightarrow}-1\le x\le5}\)

Vậy GTNN của C=6 <=> \(-1\le x\le5\)

Ta có  \(\hept{\begin{cases}\left|x+1\right|\ge x+1\left(1\right)\\\left|x-3\right|\ge3-x\left(2\right)\end{cases}}\)

Từ (1);(2) => \(\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)

Hay \(D\ge4\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1\ge0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le3\end{cases}\Leftrightarrow}-1\le x\le3}\)

Vậy GTNN của C=4 <=> \(-1\le x\le3\)

 
Khách vãng lai đã xóa
๓เภђ ภوยץễภ ђảเ
27 tháng 9 2020 lúc 19:56

Dòng cuối mik nhầm 

GTNN của D =4

Khách vãng lai đã xóa
Ngo Tung Lam
Xem chi tiết
๖Fly༉Donutღღ
8 tháng 9 2017 lúc 20:27

1)

a)  \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)

\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)

\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)

Dấu bằng xảy ra khi x + 2 = 0

                               x      = -2

Vậy GTNN của M bằng 5 khi x = -2

b)  \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)

\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)

\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)

Dấu bằng xảy ra khi x - 10 = 0

                              x        =   10

Vậy GTNN của N bằng 1 khi x = 10

2)

a)  \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)

\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)

\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)

Dấu bằng xảy ra khi y - 3 = 0

                               y      = 3

Vậy GTLN của C bằng -6 khi y = 3

b)  \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)

\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)

\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)

Dấu bằng xảy ra khi  \(x-\frac{9}{2}=0\)

                                \(x=\frac{9}{2}\)

Vậy GTLN của B bằng  \(\frac{33}{4}\)khi x =  \(\frac{9}{2}\)

l҉o҉n҉g҉ d҉z҉
8 tháng 9 2017 lúc 20:18

a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5 

Vì : \(\left(x+2\right)^2\ge0\forall x\in R\) 

Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)

Vậy Mmin = 5 khi x = -2

b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 

Vì \(\left(x-10\right)^2\ge0\forall x\in R\)

Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)

Vậy Nmin = 1 khi x = 10

Bài 2 : 

a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6

Vì \(-\left(y-3\right)^2\le0\forall x\in R\)

 Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)

Vậy Cmin = -6 khi y = 3 

b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x +  \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)

Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)

Nên :  B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)

Vậy Bmin \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)

khánh huyền
Xem chi tiết
Lê Ng Hải Anh
7 tháng 7 2018 lúc 17:07

BÀI 1: 

\(a,x^2-2x-1\)

\(=x^2-2x+1-2\)

\(=\left(x-1\right)^2-2\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)

Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy: GTNN của bt là -2 tại x=1

\(b,4x^2+4x-5\)

\(=4x^2+4x+1-6\)

\(=\left(2x+1\right)^2-6\)

Vì: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)

Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

VậyGTNN của bt là -6 tại x=-1/2

BÀI 2:

\(a,2x-x^2-4\)

\(=-x^2+2x-4\)

\(=-x^2+2x-1-3\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Vì: \(-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy GTLN của bt là -3 tại x=1

b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn

kudo shinichi
7 tháng 7 2018 lúc 17:06

1)

a) Đặt \(A=x^2-2x+1\) 

\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)

\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(A_{min}=2\Leftrightarrow x=1\)

Câu b tương tự

2)

a) Đặt \(B=2x-x^2-4\)

 \(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy\(B_{max}=-3\Leftrightarrow x=1\)

b) Đặt \(C=-x^2-4\)

Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)

\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)

Vậy \(C_{max}=-4\Leftrightarrow x=0\)

Lê Ng Hải Anh
7 tháng 7 2018 lúc 17:09

thôi bn tham khảo bài của bn kudo shinichi đi, bn ấy lm đúng rồi

Trần Văn Thành
Xem chi tiết
Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:30

\(A=\dfrac{-x^2-1+x^2+4x+4}{x^2+1}=-1+\dfrac{\left(x+2\right)^2}{x^2+1}\ge-1\)

\(A_{min}=-1\) khi \(x=-2\)

\(A=\dfrac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\dfrac{\left(2x-1\right)^2}{x^2+1}\le4\)

\(A_{max}=4\) khi \(x=\dfrac{1}{2}\)