Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hunter
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 11:36

2: Xét tứ giác MNPI có 

O là trung điểm của MP

O là trung điểm của NI

Do đó: MNPI là hình bình hành

Suy ra: MI//NP

Hunter
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 23:14

2: Xét tứ giác MNPI có

O là trung điểm của MP

O là trung điểm của NI

Do đó: MNPI là hình bình hành

Suy ra: MI//NP

Hunter
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 21:31

2: Xét tứ giác MNPI có

O là trung điểm của MP

O là trung điểm của NI

Do đó: MNPI là hình bình hành

Suy ra: MI//NP

Nguyễn Thị Nhật Lệ
Xem chi tiết
Lê Thanh Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 22:44

a: Xét ΔMNI và ΔMPI có 

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường cao

b: Xét tứ giác MNQP có

I là trung điểm của MQ

I là trung điểm của NP

Do đó: MNQP là hình bình hành

Suy ra: MN//PQ

c: Xét tứ giác MEQF có 

ME//QF

ME=QF

Do đó: MEQF là hình bình hành

Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MQ

nên I là trung điểm của FE

hay E,I,F thẳng hàng

Nguyễn Mai Anh
Xem chi tiết
nguyễn an phát
23 tháng 5 2021 lúc 14:20

 

a) xét ΔMPI và ΔMNI có:

\(\widehat{MIN}=\widehat{MIP}=90^o\)

MN=MP(ΔMNP cân tại M)

\(\widehat{MNI}=\widehat{MPI}\)(ΔMNP cân tại M)

⇒ΔMPI=ΔMNI(c.huyền.g.nhọn)

⇒IN=IP(2 cạnh tương ứng)

hay I là trung điểm của NP(đ.p.ch/m)

vì ΔMPI=ΔMNI nên \(\widehat{PMI}=\widehat{NMI}\)(2 góc tương ứng)

hay MI là phân giác của \(\widehat{PMN}\)

⇒điểm I cách đều 2 cạnh MN và MP(đ.p.ch/m)

b)Ta có: \(\widehat{MNI}+\widehat{MNA}=180^o\) (2 góc kề bù)

Mặc khác \(\widehat{MPI}+\widehat{BPI}=180^o\)(2 góc kề bù)

Mà \(\widehat{MNI}=\widehat{MPI}\)

Do đó: \(\widehat{MNA}=\widehat{BPI}=180^o-\widehat{MNI}\)

Vì I là trung điểm của NP⇒NI=PI

Mà NI=NA

⇒NA=PI

vì ΔMNP cân tại M ⇒MN=MP

Mà BP=MP ⇒BP=MN

xét ΔMNA và ΔBPI có:

\(\widehat{MNA}=\widehat{BPI}\)(ch/m trên)

NA=PI(ch/m trên)

BP=MN(ch/m trên)

⇒ΔMNA=ΔBPI(c-g-c)

⇒BI=MA(2 cạnh tương ứng)

c)Vì P là trung điểm của MB ⇒AP là đường trung tuyến của ΔMNP

vì C là trung điểm của AB ⇒MC là đường trung tuyến của ΔMNP

⇒I là trọng tâm của ΔMAB

⇒I,M,C thẳng hàng(đ.p.ch/m)

 

Nguyễn Chi
Xem chi tiết
Quỳnh
Xem chi tiết
kodo sinichi
6 tháng 8 2023 lúc 20:04

Xét tứ giác `MNPK` có :

\(\left\{{}\begin{matrix}IM=IK\\IN=IP\end{matrix}\right.\)

`=>` tứ giác `MNPK` là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

`=> MN = PK ; MN` // `PK`

Nguyễn Lê Phước Thịnh
6 tháng 8 2023 lúc 19:58

Xét tứ giác MNKP có

I là trung điểm của MK và NP

=>MNKP là hình bình hành

=>MN//PK và MN=PK

Quỳnh
6 tháng 8 2023 lúc 19:59

giúp mk với mai mk phải nộp rồi

 

Hoàng Giang
Xem chi tiết
Thảo Nguyên
25 tháng 12 2023 lúc 20:03

a) Xét △MIQ và △NIP ta có:

            IM=IN (gt)

       ∠MIQ=∠NIP(2 góc đối đỉnh)

          MQ=MP (gt)

Vậy : △MIQ = △NIP (c.g.c)

Vậy: QM = NP (2 cạnh tương ứng)

⇒ ∠MQI = ∠IPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong

Vậy : QM // NP

b) Xét △MEK và △PEN ta có:

            EM = EP (gt)

       ∠MEK =∠PEN (2 góc đối đỉnh)

            EK = EN (gt)

⇒ △MEK = △PEN (c.g.c)

⇒ ∠EMK = ∠EPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong

Vậy: MK//PN

c) Từ câu a và câu b, ta có : QM//NP và MK//PN

Vậy M,Q,K thẳng hàng.(1)

Ta có:△MEK=△PEN (theo câu b)

⇒ MK=NP (2 cạnh tương ứng)

⇒ QM=NP (theo câu a) và MK=NP(chứng minh trên)⇒QM=MK (2)

Từ (1) và (2), suy ra: M là trung điểm của đoạn thẳng QK.