Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Mai
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 1 2024 lúc 20:05

Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O

Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE

Hay OA là trung trực của BE

\(\Rightarrow AB=AE\)

Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)

\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)

Nguyễn Việt Lâm
3 tháng 1 2024 lúc 20:06

loading...

Hạnh Nguyễn thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 2 2023 lúc 20:48

Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

=>ΔABC đồng dạng vơi ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

Nguyễn Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 22:01

a: Xét (O) có

ΔBDC nội tiếp đường tròn

BC là đường kính

DO đó:ΔBDC vuông tại D

Xét ΔBCA vuông tại B có BD là đường cao ứng với cạnh huyền AC

nên \(AB^2=AD\cdot AC\)

....
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 12:58

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm

AC là tiếp tuyến có C là tiếp điểm

Do đó: AB=AC

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(3)

Xét (O) có

ΔBCE nội tiếp đường tròn

BE là đường kính

Do đó: ΔBCE vuông tại C

Suy ra: BC\(\perp\)CE(4)

từ (3) và (4) suy ra OA//CE

Long Duy
Xem chi tiết
team jederpi
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 17:53

Đề thiếu rồi bạn

....
Xem chi tiết
Akai Haruma
4 tháng 9 2021 lúc 10:13

Theo hình vẽ thì đề không đúng. Bạn coi lại

Hoàng Nguyệt
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 14:29

Bài này bạn đã đăng rồi mà? Bạn vui lòng không đăng 1 bài nhiều lần gây loãng box toán!!!

Hoàng Nguyệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2021 lúc 22:19

a) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{PAC}\) là góc tạo bởi tiếp tuyến PA và dây cung AC

Do đó: \(\widehat{ADC}=\widehat{PAC}\)(Hệ quả)

hay \(\widehat{ADP}=\widehat{CAP}\)

Xét ΔADP và ΔCAP có 

\(\widehat{ADP}=\widehat{CAP}\)(cmt)

\(\widehat{APD}\) chung

Do đó: ΔADP∼ΔCAP(g-g)

Suy ra: \(\dfrac{PD}{PA}=\dfrac{PA}{PC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(PA^2=PC\cdot PD\)(đpcm)

Hoàng Nguyệt
Xem chi tiết
Trương Huy Hoàng
14 tháng 3 2021 lúc 22:49

b, Dễ CM được \(\widehat{PAB}=\widehat{PQB}\) (Cm được 5 điểm P, A, O, Q, B thuộc đường tròn theo tứ giác nt)

Mà \(\widehat{PAB}=\widehat{AFB}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nt cùng chắn cung \(\stackrel\frown{AB}\))

\(\Rightarrow\) \(\widehat{PQB}=\widehat{AFB}\)

Mà 2 góc ở vị trí đồng vị \(\Rightarrow\) AF // CD (đpcm)

Chúc bn học tốt!