a) Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{PAC}\) là góc tạo bởi tiếp tuyến PA và dây cung AC
Do đó: \(\widehat{ADC}=\widehat{PAC}\)(Hệ quả)
hay \(\widehat{ADP}=\widehat{CAP}\)
Xét ΔADP và ΔCAP có
\(\widehat{ADP}=\widehat{CAP}\)(cmt)
\(\widehat{APD}\) chung
Do đó: ΔADP∼ΔCAP(g-g)
Suy ra: \(\dfrac{PD}{PA}=\dfrac{PA}{PC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(PA^2=PC\cdot PD\)(đpcm)