Lời giải:
a) Xét tam giác $PAC$ và $PDA$ có:
$\widehat{P}$ chung
$\widehat{PAC}=\widehat{PDA}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)
$\Rightarrow \triangle PAC\sim \triangle PDA$ (g.g)
$\Rightarrow \frac{PA}{PC}=\frac{PD}{PA}\Rightarrow PA^2=PC.PD$ (đpcm)
b) Vì $Q$ là trung điểm $CD$ nên $OQ\perp CD$
$\Rightarrow \widehat{PQO}+\widehat{PBO}=90^0+90^0=180^0$
$\Rightarrow PQOB$ là tứ giác nội tiếp
$\Rightarrow \widehat{PQB}=\widehat{POB}=\frac{1}{2}\widehat{AOB}=\widehat{AFB}$ (tính chất góc ở tâm và góc nội tiếp cùng chắn 1 cung)
Mà 2 góc này ở vị trí đồng vị nên $AF\parallel CD$ (đpcm)