Tính giá trị đa thức A=4x4+7x2y2+3y4+5y2 với x2+y2=5
cho đa thức A=x2-5xy+5y2-3x+18 và B=-x2+3xy-y2-x-7 Biết A-C=B Tính giá trị của đa thức C khi x-y=4
C=A+B
=>C=(x2-5xy+5y2-3x+18y)-(-x2+3xy-y2-x-7)
=>C=x2-5xy+5y2-3x+18y+x2-3xy+y2+x+7
=>C=(x2+x2)-(5xy+3xy)+(5y2+y2)-(3x-x)+18y+7
=>C=2x2+6y2-8xy-2x+18y+7
tính giá trị C khó quá nên mình làm có đc 1 nửa thôi, sorry nha
tham khảo
C=A+B
=>C=(x2-5xy+5y2-3x+18y)-(-x2+3xy-y2-x-7)
=>C=x2-5xy+5y2-3x+18y+x2-3xy+y2+x+7
=>C=(x2+x2)-(5xy+3xy)+(5y2+y2)-(3x-x)+18y+7
=>C=2x2+6y2-8xy-2x+18y+7
Phân tích đa thức rồi tính giá trị của biểu thức:
a. 5x2+10xy+5-5y2 tại x=1,y=2
b. 7x-7y-x2+2xy-y2 tại x=2,y=2
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
Giúp mik với ạ
Bài 7: Cho đa thức
A(x) = -1 + 5x6 - 6x -5 - 9x6 + 4x4 - 3x2
a) Tìm đa thức C(x) sao cho C(x) + B(x) = A(x)
với B(x) =- 4x6 + 4x4 - 9x2 - 4x + 2
b) *Tìm nghiệm của đa thức C(x)
Tìm x để đa thức M(x) = C(x) + (x2 + 2x) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất
Bài 8: Cho hai đa thức:
M(x) = - 4x3 + 2x4 – x2 + 3x2 – x3 – x4 + 1 + 5x3
N(x) = 3x2 + x3 – x4 - 6 + 2x4 - 3x – 8 - x3 – x2
a, Tìm P(x) sao cho P(x) + N(x) = M(x), tìm nghiệm của P(x)
b, Chứng tỏ đa thức M(x) không có nghiệm (vô nghiệm)
8:
a: M(x)=x^4+2x^2+1
N(x)=x^4+2x^2-3x-14
P(x)=M(x)-N(x)=3x+15
P(x)=0
=>3x+15=0
=>x=-5
b: M(x)=x^2(x^2+1)+1>0
=>M(x) vô nghiệm
Bài 1:
a. Tính giá trị của đa thức P= 5x4 - 8x2 +3y4 -20y2 với x2- y2 = 10
b. Tính Q =x3+x3y-5x2-x2y-2y2+5xy+3(x+y)+2020
Rút gọn và tính giá trị biểu thức sau:
P=[{x-y/2y-x-x2+y2+y-2/x2-xy-2y2}:4x4+4x2y+y2-4/x2+y+xy+x]
LƯU Ý:đây là phân thức đại số nhé
Cho hai đại lượng tỉ lệ nghịch x và y; x1 và x2 là hai giá trị của x và y1 và y2 là hai giá trị tương ứng
của y. Biết x1 = 6 ; x2 = 5 và 8y1 – 5y2 = 50.
Tính y1, y2 và hệ số tỉ lệ a của hai đại lượng tỉ lệ nghịch này
\(\text{Gọi hstl là }a\\ \Rightarrow x_1y_1=x_2y_2=a\\ \Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}=\dfrac{y_1}{5}=\dfrac{y_2}{6}=\dfrac{8y_1-5y_2}{40-30}=\dfrac{50}{10}=5\\ \Rightarrow\left\{{}\begin{matrix}y_1=25\\y_2=30\end{matrix}\right.\\ \Rightarrow a=x_1y_1=25\cdot6=150\)
Cho hai đại lượng tỉ lệ nghịch x và y; x1 và x2 là hai giá trị của x và y1 và y2 là hai giá trị tương ứng
của y. Biết x1 = 6 ; x2 = 5 và 8y1 – 5y2 = 50.
Tính y1, y2 và hệ số tỉ lệ a của hai đại lượng tỉ lệ nghịch này
cho đa thức
A =16x4-8x3y+7x2y2-9x4 ; B= -15x4+3x3y-5x2y2-6y4 ; C = 5x3y+3x2y2+17y4+1
chứng minh một trong ba đa thức này có giá trị dương với mọi x, y
Ta cộng cả ba đa thức vói nhau có :
$A+B+C = (16x^4-8x^3y+7x^2y^2-9y^4) + (-15x^4+3x^3y - 5x^2y^2-6y^4) + (5x^6y+ 3x^2y^2+17y^4+1)$
$ = x^4 + 5x^2y^2 + 2y^4 + 1 > 0 $
Do đó một trọng ba đa thức trên có giá trị dương với mọi x,y.
Cho hai đa thức: A=x2y+2xy2-7x2y2+x4 B=5x2y2-2xy2-x2y-3x4-1
b) Tính giá trị lớn nhất của A+B
c) Tìm x,y ∈ Z để tổng A và B có giá trị bằng -3
b)
\(A+B=\left(x^2y+2xy^2-7x^2y^2+x^4\right)+\left(5x^2y^2-2xy^2-x^2y-3x^4-1\right)\)
\(A+B=x^2y+2xy^2-7x^2y^2+x^4+5x^2y^2-2xy^2-x^2y-3x^4-1\)
\(A+B=(x^2y-x^2y)+(2xy^2-2xy^2)+(-7x^2y^2+5x^2y^2)+(x^4-3x^4)-1\)
\(A+B=-2x^2y^2-2x^4-1\)
c) \(-2.1^2.1^2-2.1^4-1=-3\)
CÂU C BẠN TÌM CÁCH LÀM NHA MIK KHÔNG BIẾT CÁCH TRÌNH BÀY
Bài 6:Tìm giá trị lớn nhất của biểu thức
a) A=-x2+6x-11 b) B=5-8x-x2 c) C=4x-x2+1
Bài 7:Tìm giá trị nhỏ nhất của biểu thức
a) A=x2-6x+11 b) B=x2-2x+y2+4y+8 c) C=x2-4xy+5y2+10x-22y+28
Bài 6:
a) Ta có: \(A=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu '=' xảy ra khi x=3
b) Ta có: \(B=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu '=' xảy ra khi x=-4
c) Ta có: \(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
Bài 7:
a) Ta có: \(x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3