Cho A = 2^0 + 2^1 + 2^2 + 2^3 + .... + 2^19 . Và B = 2^20. Chứng minh rằng A và B là hai số tự nhiên liên tiếp.
\(2A=2^1+2^2+...+2^{20}\)
nên \(A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
\(2A=2+2^2+2^3+...+2^{20}\\ \Leftrightarrow2A-A=2+2^2+...+2^{20}-1-2-2^2-...-2^{19}\\ \Leftrightarrow A=2^{20}-1\)
Mà \(B=2^{20}\) nên ta có đpcm
Ta có A = 1 + 2 + 22 + 23 + ... + 219
=> 2A = 2 + 22 + 23 + 24 + ... + 220
=> 2A - A = (2 + 22 + 23 + 24 + ... + 220) - (1 + 2 + 22 + 23 + ... + 219)
=> A = 220 - 1
Lại có B = 220
=> A và B là 2 số tự nhiên liên tiếp
Tick cho mình nhé !!
cho A =2\(^0\)+2\(^1\)+2\(^2\)+2\(^3\)+...+2\(^{19}\).Và B=20\(^{20}\). chứng minh rằng A và B là số tự nhiên liên tiếp
khó lắm
A=1+2 mũ 1 +2 mũ 2 + ......+2 mũ 19
suy ra 2A=2 mũ + 2 mũ 2 + ........+ 2 mũ 20
suy ra A = [ 2 mũ 1 + 2 mũ 2 + .......+ 2 mũ 20 ] - [ 1 + 2 mũ 1 + 2 mũ 2 + ....... + 2 mũ 19 ]
suy ra A = 2 mũ 20 -1
suy ra A và B là 2 số tự nhiên liên tiếp
Ko tắt đâu
Ta có:
\(A=2^0+2^1+2^2+2^3+...+2^{19}\)
\(A=1+2+2^2+2^3+...+2^{19}\)
\(2A=2+2^2+2^3+2^4+...+2^{20}\)
\(2A-A=\left(2+2^2+2^3+2^4...+2^{20}\right)-\left(1+2+2^2+2^3+...+2^{19}\right)\)
\(A=2^{20}-1\)
\(\Rightarrow A=2^{20}-1;B=2^{20}\) là hai số liên tiếp.
Vậy...
\(#tutuuu...\)
cho A=2^0+2^1+2^2+....+2^2018 và B=2^2019
chứng minh rằng A và B là 2 số tự nhiên liên tiếp
Ta có:A=2^0+2^1+2^2+...+2^2018
<=>2A=2^1+2^2+2^3+...+2^2019
<=>2A-A=2^1+2^2+....+2^2019-2^0-2^1-...-2^2018
<=>A=2^2019-2^0=2^2019-1
Vậy A và 2^2019 là tự nhiên liên tiếp(đpcm)
a) TÌm số tự nhiên n để (2n + 7) chia hết cho (n+1)
b) Cho A = 2^0 + 2^1 + 2^2 + 2^3 +... +2^2018 , B= 2^2019 . Chứng minh rằng a và b là hai số tự nhiên liên tiếp
a/ \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}.\)
\(2n+7⋮n+1\) khi \(5⋮n+1\) hay n+1 là USC của 5 => n+1={-5;-1;1;5} => n={-6;-2;0;4}
b/
\(2A=2+2^2+2^3+2^4+...2^{2019}\)
\(\Rightarrow A=2A-A=2^{2019}-1\)
=> A, B là 2 số tự nhiên liên tiếp
Bài 1:Cho a,b là 2 số tự nhiên. Biết Rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Chứng minh rằng ab chia cho 5 dư 1
Bài 2:Cho 3 số tự nhiên liên tiếp. Tích của 2 số đầu nhỏ hơn tích của 2 số sáu là 50. hỏi đã cho 3 số nào?
Bài 3: Cho a+b+c=2p. Chứng minh 2bc+b mũ 2+c mũ 2-a mũ 2= 4p(p-a)
Bài 4: Cho 3 số chẵn liên tiếp. Tích của 2 số sau lớn hơn tích của hai số đầu là 192. Hỏi đã cho 3 số nào?
1:
a chia 5 dư 3 nên a=5k+3
b chia 5 dư 2 nên b=5c+2
a*b=(5k+3)(5c+2)
=25kc+10k+15c+6
=5(5kc+2k+3c+1)+1 chia 5 dư 1
2:
Gọi ba số liên tiếp là a;a+1;a+2
Theo đề, ta có:
(a+1)(a+2)-a(a+1)=50
=>a^2+3a+2-a^2-a=50
=>2a+2=50
=>2a=48
=>a=24
=>Ba số cần tìm là 24;25;26
Cho A = 2^0+2^1+2^2+2^3+...+2^19 và B = 2^20. Chứng minh rằng A và B là hai số tự nhiên liên
a;chứng minh rằng tích của 2 số tự nhiên liên tiếp chia hết cho 2
b;chứng minh rằng A=N^2+N+1 không chia hết 2 và N
a. Vì hai số tự nhiên liên tiếp sẽ có một số chia hết cho 2 nên tích bất kì hai số tự nhiên liên tiếp nào cũng chia hết cho 2.
b. Ví dụ n = số chẵn ( 2 )
22 + 2 + 1 = 7 ko chia hết cho 2 và 2 ( n )
Ví dụ n = số lẻ ( 7 )
72 + 7 + 1 = 57 ko chia hết cho 2 và 7
Vậy nên A = n2 + n + 1 ko chia hết cho 2 và n
a/ Tích của 2 số tự nhiên liên tiếp là tích của 1 số lẻ với 1 số chẵn nên có kết quả là chẵn => chia hết cho 2
b/
+ Nếu N lẻ => N2 lẻ => N2+N chẵn => N2+N+1 lẻ => không chia hết cho 2
+ \(\frac{N^2+N+1}{N}=N+1+\frac{1}{N}\left(N\ne0\right)\)
A không chia hết cho N trừ \(N=\pm1\)
Cho a và b là 2 số tự nhiên liên tiếp ( a < b ) . Chứng tỏ rằng a và b là 2 số nguyên tố cùng nhau
Số thứ nhất là n, số thứ 2 là n + 1, ƯC ( n, n+ 1)= a
Ta có : n chia hết cho a (1)
n + 1 chia hết cho a (2)
Từ (1) và (2) ta được :
n+ 1 - n chia hết cho a
=> 1 chia hết cho a
=> a = 1
=> ƯC ( n, n+1) = 1
=> n và n + 1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
Cho A= 1 +2^2+2^4+2^6+...+2^2023 và B =2^2023. Chứng minh 3 nhân A và 2 nhân B là hai số tự nhiên liên tiếp. (Lưu ý: ^ là số mũ)
Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)
\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)
=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)
=>\(3A=2^{2024}-1\)
mà \(2\cdot B=2^{2024}\)
nên 3A và 2B là hai số tự nhiên liên tiếp