Cho ví dụ về bất đẳng thức Cô - si AGMT và giải
Bất đẳng thức Cô si Có số âm không ạ
* Các bạn ghi cho mình và hệ quả hay là những phần kiến thức về phần này với nhá
Lấy ví dụ và giúp mình từng phần về BĐT Cô si này nhá
bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng
Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau
a)
Áp dụng bđt côsi ta có:
\(\Rightarrow\) (1)
\(\Leftrightarrow\) (1)
Từ (1) và (2) \(\Rightarrow\) (ĐPCM)
Đẳng thức xảy ra \(\Leftrightarrow\) .
Cho ví dụ về bất đẳng thức theo từng loại có chứa dấu <, ≤, > và ≥.
- Bất đẳng thức chứa dấu <: -3 < (-2) + 1
- Bất đẳng thức chứa dấu ≤: 5 + (-2) ≤ -3
- Bất đẳng thức chứa dấu >: 4 > (-1) + 3
- Bất đẳng thức chứa dấu ≥: 3 + 2 ≥ 4
Nêu một bài toán về bất đẳng thức cô si
Bất đẳng thức Cô - si là gì
Cách chứng minh bất đẳng thức Cô - si tối giản nhất ?
mk ko ghõ đc
Chắc do lỗi rồi
Câu trả lời của bạn đã được quản trị viện duyệt rồi nhé
HT
Chứng minh bất đẳng thức Cô-si
Bất đẳng thức Cô-si cho hai số là:
\(\dfrac{a+b}{2}\) ≥\(\sqrt{ab}\) , a≥0 , b≥0
Giúp với mai mink thi rồi
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
Có : \(a,b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )
Vậy ...
Cho ví dụ về bất đẳng thức theo từng loại có chứa dấu \(< ,\le,>,\ge\) ?
- Bất đẳng thức chứa dấu <: -3 < (-2) + 1
- Bất đẳng thức chứa dấu ≤: 5 + (-2) ≤ -3
- Bất đẳng thức chứa dấu >: 4 > (-1) + 3
- Bất đẳng thức chứa dấu ≥: 3 + 2 ≥ 4
Nêu các dạng bất đẳng thức đã học
VÀ NÊU VÍ DỤ
Các bất đẳng thức nổi tiếng
Bất đẳng thức Bunyakovsky.Bất đẳng thức Azuma.Bất đẳng thức Bernoulli.Bất đẳng thức Boole.Bất đẳng thức Cauchy-Schwarz.Bất đẳng thức cộng Chebyshev.Bất đẳng thức Chernoff.Bất đẳng thức Cramer-Rao:333Tôi đã học :
-bất đảng thức cô-si
-bất đảng thức bunyakovsky
về phần ví dụ thì tui chịu nha
Quên hết rùi
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Lời giải:
Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:
$a+b\geq 2\sqrt{ab}$
$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$
$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$
Ta có đpcm
Dấu "=" xảy ra khi $a=b$
Cho hai số a, b, không âm. Chứng minh: a + b 2 ≥ a b (Bất đẳng thức Cô-si cho hai số không âm). Dấu đẳng thức xảy ra khi nào?
Vì a ≥ 0 nên √a xác định, b ≥ 0 nên b xác định
Ta có: a - b 2 ≥ 0 ⇔ a - 2 a b + b ≥ 0
⇒ a + b ≥ 2 a b ⇔ a + b 2 ≥ a b
Dấu đẳng thức xảy ra khi a = b.