Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Bất đẳng thức Cô si Có số âm không ạ

* Các bạn ghi cho mình và hệ quả hay là những phần kiến thức về phần này với nhá

Lấy ví dụ và giúp mình từng phần về BĐT Cô si này nhá

Lê Đình Hiếu
23 tháng 8 2021 lúc 22:36

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

Lê Đình Hiếu
23 tháng 8 2021 lúc 22:37

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

Lê Đình Hiếu
23 tháng 8 2021 lúc 22:46

a) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4

Áp dụng bđt côsi ta có:

\frac{a}{b}+\frac{b}{a}\ge 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2,\,\,\frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}}\ge 2\sqrt{\frac{a}{{{b}^{2}}}.\frac{b}{{{a}^{2}}}}=\frac{2}{\sqrt{ab}}

\(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge \frac{4}{\sqrt{ab}} (1)

\(\Leftrightarrow\) 2={{a}^{2}}+{{b}^{2}}\ge 2\sqrt{{{a}^{2}}{{b}^{2}}}=2ab\Rightarrow ab\le 1 (1)

Từ (1) và (2) \(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4 (ĐPCM)

Đẳng thức xảy ra \(\Leftrightarrow\) \displaystyle a=b=1.


Các câu hỏi tương tự
MinhKhue Nguyen
Xem chi tiết
Minh Hoàng Phan
Xem chi tiết
Nguyễn Mạnh Vũ
Xem chi tiết
Thai Nguyen
Xem chi tiết
Đinh Ngân Yến
Xem chi tiết
Nguyễn Đức Minh
Xem chi tiết
Duyên Lương
Xem chi tiết
Thu Maii Nguyễn
Xem chi tiết
tyfunny
Xem chi tiết