Cho tam giác vuông cân tại , M là điểm bất kì trên cạnh KB. VẽMEKC,E thuộc KCvàMFBC, F thuộc BC. Gọi Dlà trung điểm của KB. Chứng minh rằnga) Tứgiác CFMElà hình chữnhật.b) DEFvuông cân.
Cho tam giác ABC vuông cân tại A. Gọi E là trung điểm của BC. M là điểm bất kì thuộc cạnh BC (M khác E). Kẻ BH vuông góc với AM tại H và CK vuông góc với AM tại K.
a) Chứng minh △KAC = △HBA
b) Chứng minh AE vuông góc với BC.
c) Tam giác KEH là tam giác gì? Vì sao?
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
Cho tam giác ABC cân tại A. Gọi Dlà điểm nằm trên cạnh AB sao cho AB =3 AD và H là hình chiếu vuông góc của B trên CD, M là trung điểm của HC. Gọi N,I là giao điểm của đường thẳng qua B vuông góc với BC với các đường thẳng CD và CA. Chứng minh :
a) Tứ giác NAME là hình bình hành (với E nằm bất kì trên B) b) E là trực tâm tam giác NBM
Cho tam giác ABC vuông cân tại A, AH là đường cao . Gọi M là điểm bất kì trên cạnh BC . Gọi I , K lần lượt là hình chiếu của M trên cạnh AB , AC . Chứng minh tam giác IHK vuông cân
cho tam giác ABC cân tại A , gọi M là trung điểm BC
a)chứng minh tam giác ABM=tam giác ACM
b)trên cạnh AM lấy điểm K bất kỳ, chứng minh rằng KB = KC
c)tia BK cắt cạnh AC tại F, tia CK cắt cạnh AB tại E . chúng minh EF//BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABM=ΔACM
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
=>KM\(\perp\)BC
Xét ΔKBC có
KM là đường cao
KM là đường trung tuyến
Do đó:ΔKBC cân tại K
=>KB=KC
c: ΔKBC cân tại K
=>\(\widehat{KBC}=\widehat{KCB}\)
\(\widehat{ABF}+\widehat{FBC}=\widehat{ABC}\)
\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)
mà \(\widehat{FBC}=\widehat{ECB}\)
và \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABF}=\widehat{ACE}\)
=>\(\widehat{EBK}=\widehat{FCK}\)
Xét ΔEBK và ΔFCK có
\(\widehat{EBK}=\widehat{FCK}\)
BK=CK
\(\widehat{EKB}=\widehat{FKC}\)
Do đó: ΔEBK=ΔFCK
Cho tam giác ABC cân tại A. Gọi M là điểm bất kì thuộc cạnh BC (BM < 1⁄2BC). Trên tia đối
của tia CB lấy điểm N sao cho BM = CN. Qua M vẽ đường thẳng vuông góc BC và cắt AB tại E.
Qua N vẽ đường thẳng vuông góc BC và cắt phần kéo dài của AC tại F.
a) CMR: EM = FN.
b) Qua F kẻ FD // AB (D thuộc đường thẳng BC). CMR: MD = BN
c) EF cắt BC tại I. CMR: I là trung điểm DB.
d) Trên tia phân giác góc A lấy điểm K sao cho KB vuông góc với AB. CMR: KI vuông góc EF.
Cho tam giác ABC vuông cân tại C, M là điểm bất kì trên cạnh AB (M không trùng với A, B). Vẽ ME vuông góc AC tại E, MF vuông góc với BC tại F. gọi D là trung điểm của AB. CM: ΔDEF vuông cân
Ta có; ΔABC vuông cân tại C
mà CD là đường trung tuyến
nên CD\(\perp\)AB và CD là phân giác của \(\widehat{ACB}\)
=>\(\widehat{ACD}=\widehat{BCD}=\dfrac{90^0}{2}=45^0\)
Gọi O là giao điểm của CM với FE
Xét tứ giác CEMF có
\(\widehat{CEM}=\widehat{CFM}=\widehat{FCE}=90^0\)
=>CEMF là hình chữ nhật
=>CM cắt EF tại trung điểm của mỗi đường và CM=EF
=>O là trung điểm chung của CM và EF và CM=EF
=>OM=OC=OE=OF
=>O là tâm đường tròn ngoại tiếp tứ giác CFME
\(\widehat{CEM}=\widehat{CFM}=\widehat{CDM}=90^0\)
Do đó: C,E,M,F,D cùng thuộc đường tròn đường kính CM
=>C,E,M,F,D cùng thuộc (O)
=>D thuộc (O)
Xét (O) có
ΔDFE nội tiếp
FE là đường kính
Do đó: ΔDFE vuông tại D
Xét tứ giác FDEC có
\(\widehat{FCE}+\widehat{FDE}=180^0\)
=>FDEC là tứ giác nội tiếp
=>\(\widehat{DFE}=\widehat{DCE}=\widehat{DCA}=45^0\)
Xét ΔDFE vuông tại D có \(\widehat{DFE}=45^0\)
nên ΔDFE vuông cân tại D
Bài 3.(3 điểm)Cho tam giác ABC vuông tại A, có đường cao AH. Gọi M là trung điểm của AB. Trên tia đối của tia MH lấy điểm D sao cho MD = MH.
a)Chứng minh tứgiác AHBD là hình chữnhật.
b)Gọi E, F lần lượt là điểm đối xứng của A và B qua H. Chứng minh EFAC⊥tại K.
c)Gọi I là trung điểm FC. Chứng minh 0HKI 90=
a: Xét tứ giác AHBD có
M là trung điểm của AB
M là trung điểm của HD
Do đó: AHBD là hình bình hành
mà \(\widehat{HAB}=90^0\)
nên AHBD là hình chữ nhật
Cho hình vuông ABCD. Lấy điểm E bất kì thuộc BC. Kẻ tia Ax vuông góc với AE cắt tia CD ở F. Gọi H là trung điểm của EF, AH cắt CD tại M.
a) Chứng minh tam giác AEF cân
b) Kẻ EK//CD (K thuộc AM). Chứng minh EKFM là hình thoi.
c) Chứng minh FA2 =CF.FM
Cho tam giác ABC cân tại A,kẻ AH vuông góc BC(H thuộc BC).Gọi I là trung điểm của BH.Trên tia đối của IA lấy K sao cho IK=IA.
a,Chứng minh rằng:Tam giác ABH=Tam giác ACH
b,Chứng minh rằng:KB vuông góc BC
c,So sánh KB và AB
d,Gọi M là trung điểm của KC.Chứng minh rằng 3 điểm A,H,M thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét tứ giác ABKH có
I là trung điểm chung của AK và BH
=>ABKH là hbh
=>BK//AH
=>BK vuông góc BC
c: KB=AH
AH<AB
=>KB<AB
d: Xét ΔBCK có CH/CB=CM/CK
nên HM//BK
=>HM vuông góc BC
mà AH vuông góc BC
nên A,H,M thẳng hàng