a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABM=ΔACM
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
=>KM\(\perp\)BC
Xét ΔKBC có
KM là đường cao
KM là đường trung tuyến
Do đó:ΔKBC cân tại K
=>KB=KC
c: ΔKBC cân tại K
=>\(\widehat{KBC}=\widehat{KCB}\)
\(\widehat{ABF}+\widehat{FBC}=\widehat{ABC}\)
\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)
mà \(\widehat{FBC}=\widehat{ECB}\)
và \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABF}=\widehat{ACE}\)
=>\(\widehat{EBK}=\widehat{FCK}\)
Xét ΔEBK và ΔFCK có
\(\widehat{EBK}=\widehat{FCK}\)
BK=CK
\(\widehat{EKB}=\widehat{FKC}\)
Do đó: ΔEBK=ΔFCK