Cho tam giác ABC đường cao BD.Gọi M,N lần lượt là trung điểm của AB;AC.Tìm các tam giác cân , tam giác đều tronh hình
CHO MÌNH LỜI GIẢI NHÉ !
cho tam giác nhọn ABC (AB <AC) nội tiếp đường tròn tâm O, các điểm M, N lần lượt là trung điểm của AB, AC. Đường cao kẻ từ A của tam giác ABC cắt OM, ON lần lượt tại các điểm E, F. đường thẳng BE, CF cắt nhau tại D. Tia BE, CF cắt (O) lần lượt tại P, Q. lấy điểm K trên AC, L trên BA sao cho EK//LF//BC.a) chứng minh 4 điểm A,P, E, K nằm trên 1 đường tròn. b) PQBC là hình thang cân.c) chứng minh K, L nằm trên phân giác ngoài của góc BDC
a: EN//BC
=>góc ANE=góc ACB=góc APB
=>APEK nội tiếp
cho tứ giác ABCD có hai đường chéo AC vuông BD.Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA.Chứng minh rằng:4 điểm M,N,P,Q cùng thuộc 1 đường tròn
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2
hay MN\(\perp\)MQ
Xét tứ giác MNPQ có
MQ//NP
MQ=NP
Do đó: MNPQ là hình bình hành
mà \(\widehat{QMN}=90^0\)
nên MNPQ là hình chữ nhật
hay M,N,P,Q cùng thuộc 1 đường tròn
Cho tam giác ABC nhọn, các đường trung tuyến BM và CN. Gọi E và F lần lượt là điểm đối xứng của B qua M; của C qua N. Chứng minh a. Xét tam giác ABC: M, N lần lượt là trung điểm AB, AC (gt) => MN là đường trung bình của tam giác ABC (đ/n) => MN // BC (t/c) => Tứ giác MNCB là hình thang (dhnb) M BC a, Tứ giác ABCE là hình bình hành b, BF// = AC M c. A là trung điểm của EF
b: Xét tứ giác ABCE có
M là trung điểm của AC
M là trung điểm của BE
Do đó:ABCE là hình bình hành
cho tam giác nhọn ABC , đường cao BD ,.Gọi M,N lần lượt là trung điểm của AB,AC . Trong hình có bao nhiêu tam giác, cân tam giác đều
Cho tam giác ABC, đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE = BD.Gọi M, N theo thứ tự là trung điểm của BC và EC. Gọi P,Q lần lượt là giao điểm của AM, AN với BE. CMR : BP = PQ = QE
cho tứ giác ABCD có hai đường chéo AC vuông góc BD.Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA.Chứng minh rằng:4 điểm M,N,P,Q cùng thuộc 1 đường tròn
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2
hay MN\(\perp\)MQ
Xét tứ giác MNPQ có
MQ//NP
MQ=NP
Do đó: MNPQ là hình bình hành
mà \(\widehat{QMN}=90^0\)
nên MNPQ là hình chữ nhật
hay M,N,P,Q cùng thuộc 1 đường tròn
a) gọi I là giao điểm của AH và PN
xét tam giác ABC có
AP=BF và AN=NC
Do đó PN là đường trung bình của tam giác ABC
==>PN//BC mà AH vuông góc BC ==>PN vuông góc AH (1)
ta có : PN//BC mà PI thuộc PN ==> PI//BC
Xét tam giác AHB có
PI//BC và AP=BP
==>AI=IH (2)
TỪ (1)(2) ==)PN là đg trung trực của AH
Cho tam giác abc (ab bé hơn ac), đường cao ah. m, n, p lần lượt là trung điểm của ab, ac, bc. chứng minh tứ giác mnph là hình thang cân
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
hay MN//HP
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình của ΔACB
Suy ra: \(MP=\dfrac{AC}{2}\left(1\right)\)
Ta có: ΔAHC vuông tại H
mà HN là đường cao ứng với cạnh huyền AC
nên \(HN=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có MN//PH
nên MNPH là hình thang
mà MP=HN
nên MNPH là hình thang cân
Cho tam giác ABC nhọn (AB<AC). Gọi M,N,K lần lượt là trung điểm của AB,AC,BC. Đường cao AH. Gọi E là điểm đối xứng của M qua N. Tam giác ABC cần có thêm điều kiện gì thì tứ giác AMCE là hình chữ nhật?