Cho tam giác ABC nhọn, các đường trung tuyến BM và CN. Gọi E và F lần lượt là điểm đối xứng của B qua M; của C qua N. Chứng minh a. Xét tam giác ABC: M, N lần lượt là trung điểm AB, AC (gt) => MN là đường trung bình của tam giác ABC (đ/n) => MN // BC (t/c) => Tứ giác MNCB là hình thang (dhnb) M BC a, Tứ giác ABCE là hình bình hành b, BF// = AC M c. A là trung điểm của EF
b: Xét tứ giác ABCE có
M là trung điểm của AC
M là trung điểm của BE
Do đó:ABCE là hình bình hành