GPT: \(\left(x-2\right)\left(\sqrt{3x+1}-1\right)=3x\)
GPT
\(\left(x-2\right)\left(\sqrt{3x+1}-1\right)=3x\)
GPT: \(\log_3\left(\sqrt{x^2-3x+2}+2\right)+5^{x^2-3x+1}=2\)
Đặt \(\sqrt{x^2-3x+2}=t\ge0\)
\(\Rightarrow log_3\left(t+2\right)+5^{t^2-1}-2=0\)
Nhận thấy \(t=1\) là 1 nghiệm của pt
Xét hàm \(f\left(t\right)=log_3\left(t+2\right)+5^{t^2-1}-2\)
\(f'\left(t\right)=\dfrac{1}{\left(t+2\right)ln3}+2t.5^{t^2-1}.ln5>0\) ; \(\forall t\ge0\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm
\(\Rightarrow t=1\) là nghiệm duy nhất
\(\Rightarrow\sqrt{x^2-3x+2}=1\)
\(\Rightarrow...\)
gpt: \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
\(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
\(\left(\sqrt{x+1}-1\right)\left(\sqrt{x^2-4x+7}+1\right)=x\)
gpt \(1+3x=\left(x-x^2\right)\left(5+\sqrt{15+6x-9x^2}\right)\)
Nguyễn Việt Lâm
Gpt: \(3x^2+x+1=\left(3x+1\right)\sqrt{x^2+1}\)
\(3x^2+x+1=\left(3x+1\right)\sqrt{x^2+1}\) (ĐKXĐ : \(x>-\frac{1}{3}\) )
\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\sqrt{x^2+1}-\left(3x+1\right)\)
\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\left(\sqrt{x^2+1}-1\right)\)
\(\Leftrightarrow x\left(3x-2\right)=\left(3x+1\right)\left(\frac{x^2+1-1}{\sqrt{x^2+1}+1}\right)\)
\(\Leftrightarrow x\left(3x-2\right)=x\left(3x+1\right)\left(\frac{1}{\sqrt{x^2+1}+1}\right)\)
\(\Leftrightarrow x\left(3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x\approx1,2818\end{cases}}\)
Thử lại, ta có x = 0 thoả mãn nghiệm phương trình.
Dòng thứ 5 từ trên xuống hình như nhầm thì phải
Ừ ừ, mình nhầm rồi bạn nhé, để mình sửa lại :
\(\Leftrightarrow x\left(3x-2\right)=x^2\left(3x+1\right)\left(\frac{1}{\sqrt{x^2+1}+1}\right)\)
\(\Leftrightarrow x\left(3x-2-\frac{3x^2+x}{\sqrt{x^2+1}+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2-\frac{3x^2+x}{\sqrt{x^2+1}+1}=0\end{cases}}\)
Vì \(3x-2-\frac{3x^2+x}{\sqrt{x^2+1}+1}=0\)vô nghiệm nên x = 0 là nghiệm của phương trình.
Cảm ơn bạn góp ý nhé ^^
gpt : \(x^2-4x+5-\frac{3x}{x^2+x+1}=\left(x-1\right)\left(1-\frac{2\sqrt{1-x}}{\sqrt{x^2+x+1}}\right)\)
1, gpt:
\(3\sqrt{1+x}+3\sqrt{3-3x}=\sqrt{28x^2-12x+9}\)
2, giải hpt:
\(\left\{{}\begin{matrix}\dfrac{4}{2x+y}+\dfrac{1}{3x-y}=2\\4x+12y=7\left(2x+y\right)\left(3x-y\right)\end{matrix}\right.\).
Gpt: \(5x^2+3x+6=\left(7x+1\right)\sqrt{x^2+3}\)
\(ĐK:x\in R\)
Đặt \(\sqrt{x^2+3}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow2t^2-\left(7x+1\right)t+3x^2+3x=0\\ \Delta=\left(7x+1\right)^2-4\cdot2\left(3x^2+3x\right)=25x^2-10x+1=\left(5x-1\right)^2\ge0\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{7x+1-5x+1}{4}\\t=\dfrac{7x+1+5x-1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{2x+2}{4}=\dfrac{x+1}{2}\\t=\dfrac{12x}{4}=3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=\dfrac{x+1}{2}\\\sqrt{x^2+3}=3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3=\dfrac{x^2+2x+1}{4}\\x^2+3=9x^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x^2-2x+11=0\\x^2=\dfrac{3}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\Delta=4-132< 0\\\left[{}\begin{matrix}x=\dfrac{\sqrt{6}}{4}\\x=-\dfrac{\sqrt{6}}{4}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{\sqrt{6}}{4};\dfrac{\sqrt{6}}{4}\right\}\)
GPT: \(x^3+x^2+1=\left(x^3-3x+2\right).2018^{x^2+3x-1}+\left(x^2+3x-1\right).2018^{x^3-3x+2}\)