chứng minh rằng đa thức x2+x+1 ko có nghiệm
1/ Chứng minh M(x)= -x2 + 5 không có nghiệm.
2/ Tìm hệ số a của đa thức M(x)= a x2 + 5 x - 3, biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
Câu 1 : Cho đa thức : P(x) = x^2 + 2x +2
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 2 : Cho đa thức : P(x) = 2 ( x-3)^2 + 5
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 3 : Cho đa thức : P(x) = -x^4x-7
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 1:
Ta có:
\(P\left(x\right)=x^2+2x+2\\ P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\\ P\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
nên\(\left(x+1\right)^2+1\ge1\)
\(\Rightarrow P\left(x\right)\ge1\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm
Câu 2:
Ta có:
\(\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2+5\ge5\ne0\\ \Rightarrow P\left(x\right)\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.
Câu 3:
Vì \(4x⋮2\) nên \(4x\) nên là số chẵn.
\(\Rightarrow x^{4x}\ge0\\\Rightarrow-x^{4x}\le0\\ \Rightarrow-x^{4x}-7\le-7\ne0\\ \Rightarrow P\left(x\right)\ne0 \)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.
a) Kiểm tra xem 1,-2,1/2 có phải là nghiệm của đa thức P(x)= x^3 - x^2 - 4x + 4 hay ko?
b) Chứng minh rằng đa thức P(x)= 5x^3 - 7x^2 + 4x -2 có một nghiệm là 1
a: \(P\left(1\right)=1^3-1^2-4\cdot1+4=-4+4=0\)
=>x=1 là nghiệm của P(x)
\(P\left(-2\right)=\left(-2\right)^3-\left(-2\right)^2-4\cdot\left(-2\right)+4=-8-4+8+4=0\)
=>x=-2 là nghiệm của P(x)
b: \(P\left(1\right)=5\cdot1^3-7\cdot1^2+4\cdot1-2=5-7+4-2=0\)
=>x=1 là nghiệm của P(x)
Chứng minh rằng nếu đa thức f(x)=ax2+bx+c thỏa mãn f(2)=f(-3)=156 và f(-1)=132 thì đa thức f(x) ko có nghiệm.
Chứng tỏ rằng đa thức sau ko có nghiệm: f(x) = x2 - x - x + 2
Câu hỏi của Nguyễn Thị Bảo An - Toán lớp 7 | Học trực tuyến
f(x)=x2 - x - x + 2=x2 - x - x + 1 + 1
=x(x-1)-(x-1)+1=(x-1)(x-1)+1
=(x-1)2+1.
Do (x-1)2≥≥0 (∀∀x)
⇒⇒(x-1)2+1≥≥ 1 >0 (∀∀x)
Vậy f(x) vô nghiệm
1.Tìm nghiệm đa thức
1)6x3 - 2x2
2)|3x + 7| + |2x2 - 2|
2.Chứng minh đa thức ko có nghiệm
1)x2 + 2x + 4
2)3x2 - x + 5
3.Tìm các hệ số a, b, c, d của đa thức f(x) = ax3 + bx2+ cx + d
Biết f(0)=5; f(1)=4; f(2)=31; f(3)=88
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Bài 3:
$f(0)=a.0^3+b.0^2+c.0+d=d=5$
$f(1)=a+b+c+d=4$
$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$
$8a+4b+2c=31-d=26$
$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$
Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$
Vậy.......
a) Cho đa thức P(x) thỏa mãn : x . P(x + 2 ) = ( x2 - 9 )P(x)
Chứng minh rằng đa thức P(x) có ít nhất 3 nghiệm .
b) Cho đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ . Chứng minh rằng P(x) ko thể có nghiệm là số nguyên .
Thay x = 0 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
0.P( 0 + 2 ) = (4 - 9). P(0) suy ra 5. P(0) = 0 hay P(0) = 0. Vậy x = 0 là nghiệm của đa thức.
Thay x = 3 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
3.P(5) = (9 - 9 ).P(3) suy ra P(5 ) = 0 . Vậy x = 5 là nghiệm của đa thức P(x).
Tương tự với x = - 3 ta có:
-3. P(-1) = (9 - 9). P(-3) suy ra P(-1) = 0. Vậy x = -1 cũng là nghiệm của đa thức P(x).
Vậy đa thức P(x) có ít nhất 3 nghiệm là: 0; 5; -1.
b, Giả sử P(x) có nghiệm nguyên là a. Khi đó sẽ có đa thức g(x) để: P(x) = g(x) (x - a).
P(1) = (1-a).g(1) là một số lẻ suy ra 1- a là số lẻ .Vậy a chẵn.
P(0) = a .g(0) là một số lẻ , suy ra a là số chẵn.
a không thể vừa là số lẻ, vừa là số chẵn. Ta có mâu thuẫn.
Vậy ta có ĐPCM.
Bùi Thị Vân ơi, khúc đầu câu a) là thay x=0 vài x.P(x+2) = (x^2-9) P(x) mà bạn thay bị sai thì phải.Bạn xem lại giúp mình
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Xét đa thức P(x)=ax+b. Chứng minh rằng nếu P(x) có hai nghiệm x1,x2 khác nhau thì a=b=0 (hay P(x) là đa thức không)