CÂU 11: Cho tứ giác ABCD, và AC IBD ; Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Khi đó MNPQ là hình gì? a) c/m MNPQ là hình chữ nhật
Câu 17:. Chọn câu đúng:
A. Tứ giác ABCD là hình chữ nhật khi có và .
B. Tứ giác ABCD là hình chữ nhật khi có và .
C. Tứ giác ABCD là hình chữ nhật khi có AB=CD; AD=BC; AC=BD.
D. Tứ giác ABCD là hình chữ nhật khi có AB=CD; AB=BC và AC=BD.
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB
d) AE = 3KI
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
Cho tứ giác ABCD có AC = BD và AC vuông góc BD. khi đó : A. Tứ giác ABCD là hình vuông B. Tứ giác ABCD là hình bình hành C. Tứ giác ABCD là hình thoi D. ABCD là tứ giác bất kì
CÂU 11: Cho tứ giác ABCD, AC=BD, AC thuộc BD ; Gọi M, N ,P, Q lần lượt là trung điểm của AB, BC, CD, DA. Khi đó MNPQ là hình gì ? Lời giải ?
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của DA
P là trung điểm của DC
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MNPQ là hbh
Cho hình thang ABCD(AB//CD) và AB<CD, DA cắt CB tại I
a) Chứng minh IAB là tam giác cân
b) Chứng minh tam giác IBD = tam giác IAC
c) AC cắt BD tại K. Chứng minh tam giác KAD = tam giác KBC
d) Chứng minh IK là trục đối xứng của hình thang ABCD
a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)
\(\widehat{IBA}=\widehat{ICD}\)
mà \(\widehat{IDC}=\widehat{ICD}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
hay ΔIAB cân tại I
b: Xét ΔIBD và ΔIAC có
IB=IA
\(\widehat{BID}\) chung
ID=IC
Do đó: ΔIBD=ΔIAC
Câu 1 Cho tứ giác ABCD Gọi Q là trung điểm của AC đường thẳng qua Q cắt AB AC lần lượt tại I và K chứng minh diện tích tam giác AIK bằng diện tích tam giác CIK
Câu 2 Cho tam giác ABC cân tại A Gọi M và N lần lượt là trung điểm của AB và AC .a) chứng minh tứ giác BMNC là hình thang .b). Trên tia đối của tia MN xác định điểm E sao cho NE=NM hỏi tứ giác AECM là hình gì vì sao
Câu 3 Cho tam giác abc vuông tại a gọi D E theo thứ tự là trung điểm của AB BC Tính de biết BC = 10 cm AB = 8 cm
Câu 4 cho tứ giác ABCD có Â = 90° B =60° C =120°. a)tính số đo góc D. b) tứ giác ABCD là hình gì vì sao?
Giúp mình với sắp thi rùi
Cho hình thang cân ABCD (AB // CD) và AB < CD, DA cắt CB tại I
a) Chứng minh IAB là tam giác cân
b) Chứng minh tam giác IBD = tam giác IAC
c) AC cắt BD tại K; chứng minh tam giác KAD = tam giác KBC
d) Chứng minh IK là trục đối xứng của hình thang ABCD
a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)
\(\widehat{IBA}=\widehat{ICD}\)
mà \(\widehat{IDC}=\widehat{ICD}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
hay ΔIAB cân tại I
b: Xét ΔIBD và ΔIAC có
IB=IA
\(\widehat{BID}\) chung
ID=IC
Do đó: ΔIBD=ΔIAC
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.
a. Tứ giác MNPQ là hình gì? Vì sao?
b. Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông.
c. Với điều kiện câu b, hãy tính tỉ số diện tích của 2 tứ giác ABCD và MNPQ khi biết AC = a.
Câu 1 cho tứ giác ABCD nội tiếp nửa đường tròn kính AD. Hai đường chéo AC và BD cắt nhau tại d vẽ AD vuông góc với ad chứng minh A. Tứ giác ABEF nội tiếp B. AC là tia phân giác của góc BCF Câu 8 cho đường tròn tâm o đường kính AB. Vẽ dây cung CD vuông góc AB tại I (I nằm giữa a và o) lấy điểm e trên cung nhỏ BC (e khác b và c) AE cắt CD tại F. Chứng minh A. BEFI là tứ giác nội tiếp B. AE x AF = AC²