Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hoàng hà
Xem chi tiết
-Chẹp chẹp
22 tháng 7 2021 lúc 20:21

A B C H M

( hình hơi xấu :V )

Giả sử tam giác ABC vuông tại A( AB < AC)   có AM là trung tuyến, AH là đường cao

Vì đường cao và đường trung tuyến ứng với cạnh huyền của tam giác tỷ lệ với 12 :13 , do đó đặt AH = 12x,  AM =13 x

Suy ra BM = CM = 13x

Áp dụng định lý Pytago cho \(\Delta AHM\)có:

HM2= AM2 -  AH2 =  (13x)2 - (12x)2 = (25 x)2 

=> HM = 5x 

Do đó HC =  5x + 13x = 18x 

Dễ thấy \(\Delta ABC\)Đồng dạng  \(\Delta HAC\)(g.g)

=> \(\frac{AB}{AC}\)\(\frac{HA}{HC}\)\(\frac{12x}{18x}\)\(\frac{2}{3}\)

=> kl

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 7 2018 lúc 3:22

Gọi độ dài các cạnh góc vuông lần lượt là  x ; y x , y > 0

Theo định lí Py – ta – go ta có:  x 2 + y 2 = 26 2 ⇔ x 2 + y 2 = 676

Theo bài ra ta có:  x 5 = y 12 ⇒ x 2 25 = y 2 144 = x 2 + y 2 25 + 144 = 676 169 = 4

Khi đó ta có:  x 2 = 25.4 y 2 = 144.4 ⇒ x = 10 c m y = 24 c m

Chọn đáp án B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2018 lúc 15:39

dangnhathoang
Xem chi tiết
Nguyễn Lam Giang
Xem chi tiết

giả sử tam giác ABC vuông tại A(AC>AB)

ta có BC=102 cm

AC = (15.AB )/8 

tam giác ABC vuông tại A(giả thiết)

=> AB2 + AC2 =BC2

(=) AB2 + 225/64 AB2 = 1022 = 10404

(=) 289 AB2 = 10404.64=665856

=> AB= 2304

=> AB = \(\sqrt{2304}=48\)

AC= 15/8 . 48 = 90 (cm)

#Học-tốt

Khách vãng lai đã xóa
Nguyễn Lam Giang
Xem chi tiết
Lê Thị Nhung
24 tháng 2 2020 lúc 21:05

Giả sử hai cạnh góc vuông cần tìm là a và b  (cm) ( b>a>0)

Vì hai canh góc vuông tỉ lệ với 8 và 15 nên a:b=8:15

hay a/8=b/15=k (k>0)

suy ra a=8k, b = 15k (1) 

vì tam giác vuông có cạnh huyền bằng 102 nên a^2 + b^2= 1022 (2)

từ (1) va (2) suy ra 64k2 + 225 k2 = 10404

289 k2 = 10404

k2=36

k=6

a=48 (cm), b = 90 (cm)

Khách vãng lai đã xóa

Đặt 2 cạnh góc vuông và cạnh huyên của tam giác lần lượt là  \(a;b;c\left(a;b\ne0\right)\)

Vì các cạnh góc vuông của tam giác lần lượt tỉ lệ với 8 và 15 \(\Rightarrow\frac{a}{8}=\frac{b}{15}\Leftrightarrow\frac{a^2}{8^2}=\frac{b^2}{15^2}\)

Vì là tam giác vuông \(\Rightarrow a^2+b^2=c^2\) ( ĐL Pytago ) . Áp dụng t/c dãy tỉ số bằng nhau

Ta có : \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{c^2}{64+225}=\frac{10404}{289}=36\)

Vì \(\frac{a^2}{8^2}=36\Rightarrow\sqrt{\frac{a^2}{8^2}}=\sqrt{36}\Rightarrow\frac{a}{8}=6\Leftrightarrow a=6.8=48\)

Vì \(\frac{b^2}{15^2}=36\Rightarrow\sqrt{\frac{b^2}{15^2}}=\sqrt{36}\Rightarrow\frac{b}{15}=6\Leftrightarrow b=15.6=90\)

Vậy độ dài hai cạnh góc vuông của tam giác lần lượt là 48 và 90

Khách vãng lai đã xóa
Trương Quỳnh Trang
Xem chi tiết
Nguyên Đinh Huynh Ronald...
18 tháng 11 2015 lúc 14:32

tick mình mình làm cho

Kim Tae-huyng V
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 21:48

Gọi hai cạnh góc vuông cần tìm là AB,AC và cạnh huyền là BC(Điều kiện: AB>0; AC>0; BC>0)

Theo đề, ta có: AB:AC=3:4 và AB+AC+BC=24(cm)

\(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\)

Đặt \(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=\left(3k\right)^2+\left(4k\right)^2=25k^2\)

hay BC=5k

Ta có: AB+AC+BC=24cm(gt)

\(\Leftrightarrow3k+5k+4k=24\)

\(\Leftrightarrow12k=24\)

hay k=2

⇔AB=6cm; AC=8cm

Vậy: Độ dài hai cạnh góc vuông cần tìm là 6cm và 8cm

Mai Anh{BLINK} love BLAC...
22 tháng 2 2021 lúc 21:35

Tìm được độ dài các cạnh của tam giác lần lượt là:

6 cm, 8 cm, 10 cm.

vi khánh tường
Xem chi tiết
Akai Haruma
24 tháng 8 lúc 18:26

Lời giải:
Vì các cạnh góc vuông tỉ lệ với 5 và 12 nên gọi độ dài 2 cạnh góc vuông là $5a$ và $12a$ với $a>0$.

Theo định lý Pitago:

$(5a)^2+(12a)^2=52^2$

$\Rightarrow 169a^2=2704$
$\Rightarrow a^2=16\Rightarrow a=4$ (do $a>0$)

Độ dài 2 cạnh góc vuông là:

$5a=5.4=20$ (cm) 

$12a=12.4=48$ (cm)