Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Nam Khánh
Xem chi tiết
Nguyễn Đức Trí
20 tháng 8 2023 lúc 14:23

Ta có :

\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab-2bc-2ac\)

mà theo đề bài \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow\left(a-b-c\right)^2=-ab-bc-ac=0\)

\(\Rightarrow\left(a-b-c\right)^2=-\left(ab+bc+ac\right)=0\)

mà \(-\left(ab+bc+ac\right)\le0\)

\(\Rightarrow a=b=c=0\)

\(\Rightarrow dpcm\)

Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa
trần vũ hoàng phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 6 2023 lúc 20:39

=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Nguyễn Hoàng Duy
8 tháng 6 2023 lúc 22:13

Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)

=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)

=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]

vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc

Nguyễn Thị My
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 15:53

Kẻ đường cao BD ứng với AC. Do góc A tù \(\Rightarrow\) D nằm ngoài đoạn thẳng AC hay \(CD=AD+AC\) và \(\widehat{DAB}=180^0-120^0=60^0\)

Áp dụng định lý Pitago:

\(AB^2=BD^2+AD^2\) \(\Rightarrow BD^2=AB^2-AD^2\)

Trong tam giác vuông ABD:

\(cos\widehat{BAD}=\dfrac{AD}{AB}\Rightarrow\dfrac{AD}{AB}=cos60^0=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}AB\)

\(\Rightarrow BD^2=AB^2-\left(\dfrac{1}{2}AB^2\right)=\dfrac{3}{4}AB^2\)

Pitago tam giác BCD:

\(BC^2=BD^2+CD^2=\dfrac{3}{4}AB^2+\left(AD+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\left(\dfrac{1}{2}AB+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\dfrac{1}{4}AB^2+AB.AC+AC^2\)

\(=AB^2+AB.AC+AC^2\)

Hay \(a^2=b^2+c^2+bc\)

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 15:54

undefined

Xem chi tiết
Trần Ái Linh
21 tháng 7 2021 lúc 16:21

a) `4x-2>5x+1`

`<=>-x>3`

`<=>x<-3`

b) Theo BĐT Cauchy:

`a^2+b^2 >= 2ab`

Tương tự:

`b^2+c^2>=2bc`

`c^2+a^2>=2ca`

Cộng vế với vế: `2(a^2+b^2+c^2) >= 2(ab+bc+ca)`

`<=>a^2+b^2+c^2 >= ab+bc+ca` (ĐPCM)

Nguyễn Huy Tú
21 tháng 7 2021 lúc 16:25

a, \(4x-2>5x+1\Leftrightarrow-x>3\Leftrightarrow x< -3\)

b, Ta có : \(a^2+b^2+c^2\ge ab+bc+ca\)

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)* luôn đúng *

hoangtuvi
Xem chi tiết
tthnew
10 tháng 8 2021 lúc 13:42

Ta có

$$a^2+b^2+c^2-ab-bc-ca=0,$$

hay $$\dfrac{1}{2}\left[(a-b)^2+(b-c)^2 +(c-a)^2\right[ = 0.$$

Mà vế trái luôn không âm \(\forall a,b,c \in \mathbb{R}\), đẳng thức xảy ra khi $a=b=c.$

Vậy ta có điều cần chứng minh.

 

Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 13:49

Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Trần Hằng
Xem chi tiết
ngocanh
Xem chi tiết
Nguyễn Bảo Anh
17 tháng 10 2021 lúc 8:42

 

chứng minh rằng

nếu a2 + b+ c2 = ab +ac + bc thì a = b= c

    Giải 

Ta có: a^2 + b^2 + c^2 = ab + bc + ca

<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca

<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.

ミ★ήɠọς τɾίếτ★彡
17 tháng 10 2021 lúc 8:46

\(a^2+b^2+c^2=ab+ac+bc\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

nguyễn hoàng
17 tháng 10 2021 lúc 8:49

Ta có: a^2 + b^2 + c^2 = ab + bc + ca

<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca

<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.

Trương Ngọc Anh Tuấn
Xem chi tiết
Nguyễn Khánh Duy
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2021 lúc 18:06

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 19:11

Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Hùng Chu
25 tháng 7 2021 lúc 19:19

a2+b2+c2=ab+bc+caa2+b2+c2=ab+bc+ca

⇔2a2+2b2+2c2=2ab+2bc+2ca⇔2a2+2b2+2c2=2ab+2bc+2ca

⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ca+a2)=0⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ca+a2)=0

⇔(a−b)2+(b−c)2+(c−a)2=0⇔(a−b)2+(b−c)2+(c−a)2=0

⇔⎧⎪⎨⎪⎩a−b=0b−c=0c−a=0⇔{a−b=0b−c=0c−a=0 ⇔a=b=c