CM từ hệ thức a+b/a-b=c+d/c-d ta có hệ thức: a/b=c/d
Chứng minh rằng từ hệ thức a+b/a-b=c+d/c-d ta có hệ thức : a/b=c/d
chứng minh rằng từ hệ thức a+b/a-b=c+d/c-d ta có hệ thức a/b=c/d
Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a+b-a+b}{c+d-c+d}\\ =\dfrac{2a}{2c}=\dfrac{2b}{2d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\rightarrow\) đpcm
Chúc bạn học tốt!!!
Nếu:
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow a\left(c-d\right)+b\left(c-d\right)=c\left(a-b\right)+d\left(a-b\right)\)
\(\Leftrightarrow ac-ad+bc-bd=ac-bc+ad-bd\)
\(-ad+bc-bd=-bc+bc-bd\)
\(-ad=-bc\)
\(ad=bc\)
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
\(ad=bc\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
cmr từ hệ thức a+b/a-b=c+d/c-d ta suy ra hệ thức a/b=c/d
Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(a+\frac{b}{a}-b=bk+\frac{b}{bk}-b=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(c+\frac{d}{c}-d=dk+\frac{d}{dk}-d=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Bài này vẫn còn cách khác để chúng minh nhưng mà làm đặt k thì dễ hiểu hơn
CMR từ hệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) ta có hệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a+a+b-b}{c+c+d-d}=\dfrac{2a}{2c}=\dfrac{a}{c}_{\left(1\right)}.\)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{a-a+b+b}{c-c+d+d}=\dfrac{2b}{2d}=\dfrac{b}{d}_{\left(2\right)}.\)
Từ \(_{\left(1\right)+\left(2\right)}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\) (t/c tỉ lệ thức).
\(\Rightarrowđpcm.\)
a=b*k
c=d*k
thì b*k+b/b*k-b=b*(k+1)/b*(k-1)=k+1/k-1
thì d*k+d/d*k-d=d*(k+1)/d*(k-1)=k+1/k-1
nen suy ra a+b/a-b=c+d/c-d
c/m rằng từ hệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) ta có hệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Vì : \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) ⇒ \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
Hay: a+b/c+d
Và: a-b/c-d
cùng = a/c=b/d
vậy : \(\dfrac{a+b}{c+d}\) = \(\dfrac{a-b}{c-d}\) (đpcm)
Chứng minh rằng từ hệ thức\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) ta có hệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\).
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{2a}{2c}=\dfrac{a}{c}\) \(\left(1\right)\)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\), ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
\(\rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\rightarrow ac-ad+bc-bd=ac+ad-bc-bd\)
\(\rightarrow-ad+bc=ad-bc\)
\(\rightarrow bc+bc=ad+ad\)
\(\rightarrow2bc=2ad\)
\(\rightarrow bc=ad\)
\(\rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
Chúc bạn học tốt!
CMR: từ hệ thức :\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
ta có hệ thức \(\frac{a}{b}=\frac{c}{d}\)
a+b/a-b=c+d/c-d suy ra a+b/c+d=a-b/c-d.mà a+b/c+d=a/c=b/d hay a/b=c/d. vậy a/b=c/d( đ.f.c.m)
Cho bốn số hữu tỉ khác nhau a,b,c,d thỏa mãn hệ thức ad=cb.
Chứng tỏ rằng từ hệ thức trên ta có các tỉ lệ thức sau:
a) \(\frac{a+b}{b}=\frac{c+d}{d}\)
b) \(\frac{a-b}{b}=\frac{c-d}{d}\)
a) Cách 1: Từ điều kiện \(a,b,c,d\) khác nhau và \(a.d=b.c\)
ta suy ra \(a,b,c,d\ne0\) và \(\frac{a}{b}=\frac{c}{d}\left(1\right)\).
Cộng vào hai vế của (1) cùng số 1 ta được:
\(\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)
Cách 2: Theo tính chất của tỉ lệ thức, từ (1) suy ra:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{c+d}{d}=\frac{a+b}{b}.\)
b) Giải tương tự câu a) ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{c}=\frac{c-d}{d}.\)
Hoặc ta có theo tính chất của tỉ lệ thức
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)
theo bài ra , ta có :
ad = cd
=>\(\frac{a}{b}=\frac{c}{d}\) ( 1 )
=> \(\frac{a}{b}+1=\frac{c}{d}+1\)
=>\(\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
b/ Từ 1 ở phần a ta có:
\(\frac{a}{b}-1=\frac{c}{d}-1\)
=> \(\frac{a-b}{b}=\frac{c-d}{d}\) (đpcm)
Ta có :
ad = bc
=> a / b = c / d
a)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{b}+1=\frac{c}{d}+1\)
=> \(\frac{a+b}{b}=\frac{c+d}{d}\)
b)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{b}-1=\frac{c}{d}-1\)
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)
Chứng minh rằng từ hệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) \(\left(a\ne b;c\ne d;b,d\ne0\right)\)ta có hệ thức \(\frac{a}{b}=\frac{c}{d}\)
Bạn có thể tham khảo tại đây: Câu hỏi của nguyễn hoàng lê thi - Toán lớp 7 | Học trực tuyến