a) Cách 1: Từ điều kiện \(a,b,c,d\) khác nhau và \(a.d=b.c\)
ta suy ra \(a,b,c,d\ne0\) và \(\frac{a}{b}=\frac{c}{d}\left(1\right)\).
Cộng vào hai vế của (1) cùng số 1 ta được:
\(\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)
Cách 2: Theo tính chất của tỉ lệ thức, từ (1) suy ra:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{c+d}{d}=\frac{a+b}{b}.\)
b) Giải tương tự câu a) ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{c}=\frac{c-d}{d}.\)
Hoặc ta có theo tính chất của tỉ lệ thức
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)
theo bài ra , ta có :
ad = cd
=>\(\frac{a}{b}=\frac{c}{d}\) ( 1 )
=> \(\frac{a}{b}+1=\frac{c}{d}+1\)
=>\(\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
b/ Từ 1 ở phần a ta có:
\(\frac{a}{b}-1=\frac{c}{d}-1\)
=> \(\frac{a-b}{b}=\frac{c-d}{d}\) (đpcm)
Ta có :
ad = bc
=> a / b = c / d
a)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{b}+1=\frac{c}{d}+1\)
=> \(\frac{a+b}{b}=\frac{c+d}{d}\)
b)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{b}-1=\frac{c}{d}-1\)
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)
Từ \(ad=cb\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a)\(\Rightarrow VT=\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\left(1\right)\)
\(VP=\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\left(2\right)\)
Từ (1) và (2) ->Đpcm
b)\(\Rightarrow VT=\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
\(VP=\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2) ->Đpcm
Ta có: ad = bc
\(\Rightarrow\) \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
b) \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\) (đpcm)