3x + 1 = 32
a) 3x + 3x+1 + 3x+2 =117
b) 3 + 4 (x - 10) = 32 + 6
a)
\(3^x+3^{x+1}+3^{x+2}=117\\ \Leftrightarrow3^x+3.3^x+9.3^x=117\\ 13.3^x=117\\ \Leftrightarrow3^x=9\\ \Leftrightarrow3^x=3^2\\ \Leftrightarrow x=2\)
b)
\(3+4\left(x-10\right)=3^2+6\\ \Leftrightarrow3+4\left(x-10\right)=15\\ \Leftrightarrow4\left(x-10\right)=12\\ \Leftrightarrow x-10=3\\ \Leftrightarrow x=13\)
a) \(3^x+3^{x+1}+3^{x+2}=117\)
\(3^x+3^x.3+3^x.3^2=117\)
\(3^x.\left(1+3+3^2\right)=117\)
\(3^x.13=117\)
\(3^x=9\)
\(x=2\)
b) \(3+4\left(x-10\right)=3^2+6\)
\(3+4x-40=9+6\)
\(4x=15+40-3\)
\(4x=52\)
\(x=13\)
Tìm số nguyên x, biết
a) x – 2 = -6
b)15 – (x – 7) = -21
c)4.(3x – 4) – 2 = 18
d) (3x – 6) + 3 = 32
e) (3x – 6) . 3 = 32
f) (3x – 6) : 3 = 32
g) (3x – 6) - 3 = 32
h) (3x -2 mũ4 ).7mũ3 = 2.7mũ4
i) |x| = |-7| k) |x+1| = 2
l)|x – 2| = 3
m) x +|-2| = 0
o) 72 – 3.|x + 1| = 9
p) |x+1| = 3 và x+1< 0
q) (x – 2).(x + 4) = 0
a) \(x-2=-6\)
\(x=-6+2\)
\(x=-4\)
b) \(15-\left(x-7\right)=-21\)
\(x-7=36\)
\(x=43\)
c) \(4.\left(3x-4\right)-2=18\)
\(4\left(3x-4\right)=20\)
\(3x-4=5\)
\(3x=9\)
\(x=3\)
d) \(\left(3x-6\right)+3=32\)
\(3x-6=29\)
\(3x=29+6\)
\(3x=35\)
\(x=\frac{35}{3}\)
e) \(\left(3x-6\right).3=32\)
\(3x-6=\frac{32}{3}\)
\(3x=\frac{32}{3}+6\)
\(3x=\frac{50}{3}\)
\(x=\frac{50}{9}\)
f) \(\left(3x-6\right):3=32\)
\(3x-6=96\)
\(3x=102\)
\(x=34\)
g) \(\left(3x-6\right)-3=32\)
\(3x-6=35\)
\(3x=41\)
\(x=\frac{41}{3}\)
h) \(\left(3x-2^4\right).7^3=2.7^4\)
\(\left(3x-2^4\right)=2.7=14\)
\(\left(3x-16\right)=14\)
\(3x=14+16=30\)
\(x=10\)
i) \(\left|x\right|=\left|-7\right|\)
\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
k) \(\left|x+1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
l) \(\left|x-2\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
m) \(x+\left|-2\right|=0\)
\(x+2=0\)
\(x=-2\)
o) \(72-3\left|x+1\right|=9\)
\(3\left|x-1\right|=63\)
\(\left|x-1\right|=21\)
\(\Rightarrow\orbr{\begin{cases}x-1=21\\x-1=-21\end{cases}\Rightarrow\orbr{\begin{cases}x=22\\x=-20\end{cases}}}\)
p) Ta có: \(\left|x-1\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
mà \(x+1< 0\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-2\)
q) \(\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)
hok tốt!!
|1-3x|-1=-3x
2x+2-2x+1=32
3x+1-2=32+[52-(22-1)]
3x-1 - 2 = 32 + [52 - 3(22 - 1)]
3x-1-2=9+[25-3(4-1)]
3x-1-2=9+(25-3.3)
3x-1-2=9+(25-9)
3x-1-2=9+16
3x-1-2=25
3x-1=25+2
3x-1=27
3x-1=33
=>x-1=3
x=3+1
x=4
2x-1 + 3 = 52
2x-1+3=25
2x-1=25-3
2x-1=22
2.(1+3+32+...+3x)+1=81 tìm x
2.(1 + 3 + 3² + ... + 3ˣ) + 1 = 81
2.(3ˣ⁺¹ - 1)/2 + 1 = 81
3ˣ⁺¹ - 1 + 1 = 81
3ˣ⁺¹ = 81
3ˣ⁺¹ = 3⁴
x + 1 = 4
x = 4 - 1
x = 3
3x-32>-5x+1
\(3x-32>-5x+1\)
\(3x+5x>32+1\)
\(8x>33\)
\(x>\frac{33}{8}\)
\(3x-32>-5x+1\)
\(3x>-5x+1+32\)
\(3x>-5x+33\)
\(3x+5x>33\)
\(8x>33\)
=> \(x>\frac{33}{8}\)
Vậy \(x>\frac{33}{8}\)
3x+5x>1+32
8x>33
x>33/8
3x - 32 > -5x+1
\(3x-32>-5x+1\)
\(\Leftrightarrow8x>33\Leftrightarrow x>\frac{33}{8}\)
Vậy \(x>\frac{33}{8}\)
(3x -1)^5=32
giúp mk với
\(\left(3x-1\right)^5=32\\ \Rightarrow\left(3x-1\right)^5=2^5\\ \Rightarrow3x-1=2\\ \Rightarrow x=1\)
(3x - 1)^5 = 2^5
3x -1 =2
3x= 2+1
3x =3
x =1
`(3x - 1)^5 = 32`
`<=> (3x - 1)^5 = 2^5`
`<=> 3x - 1 = 2`
`<=> 3x = 3`
`<=> x = 1`
Tìm x
a. \(x-32+15-3x=-4x+1-32\)
x-32+15-3x=-4x+1-32
x-3x+4x=1-32+32-15
2x=1+32-32-15
2x=1+(32-32)-15
2x=1-15
2x=-14
x=-14:2
x= - 7