\(\int_0^1\left|\left(e^Y\right)^2\right|dx\)
\(\int_0^1\left|\left(y^2\right)^2-\left(-y+2\right)^2\right|dx\)
Đề sai hoặc thiếu hàm liên hệ y và x
Chỉ có các loại tích phân sau:
\(\int\limits^b_af\left(x\right)dx\) ; \(\int\limits^b_af\left(y\right)dy\) ; \(\int\limits^b_a\int\limits^d_cf\left(x;y\right)dxdy\) ...
Không tồn tại các tích phân dạng \(\int\limits^b_af\left(x\right)dy\) hoặc \(\int\limits^b_af\left(y\right)dx\)
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).
1/ I=\(\int_{-2}^2\left|x^2-1\right|dx\)
2/ I= \(\int_1^e\sqrt{x}.lnxdx\)
3/ I= \(\int_0^{\dfrac{\pi}{2}}\left(e^{sinx}+cosx\right)cosxdx\)
4/ I= \(\int_0^{\dfrac{pi}{2}}\dfrac{sin2x}{\sqrt{cos^2x+4sin^2x}}dx\)
5/ I= \(\int_0^{\dfrac{\pi}{4}}\sqrt{2}cos\sqrt{x}dx\)
6/ I= \(\int_1^{\sqrt{e}}\dfrac{1}{x\sqrt{1-ln^2x}}dx\)
7/ I= \(\int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}\dfrac{sin^6x+cos^6x}{6^x+1}dx\)
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)
\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)
Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)
\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)
I=A+B=...
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1) = 1,\(\int_0^1xf\left(x\right)dx=\dfrac{1}{5}\), \(\int_0^1\left[f'\left(x\right)\right]^2dx=\dfrac{9}{5}\) Tính tích phân \(I=\int_0^1f\left(x\right)dx\)
Đang học Lý mà thấy bài nguyên hàm hay hay nên nhảy vô luôn :b
\(I_1=\int\limits^1_0xf\left(x\right)dx\)
\(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)
\(\Rightarrow\int xf\left(x\right)dx=\dfrac{1}{2}x^2f\left(x\right)-\dfrac{1}{2}\int x^2f'\left(x\right)dx\)
\(\Rightarrow\int\limits^1_0xf\left(x\right)dx=\dfrac{1}{2}x^2|^1_0-\dfrac{1}{2}\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{2}\int\limits^1_0\left[f'\left(x\right)\right]^2dx=\dfrac{3}{10}\Rightarrow\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{3}{5}\)
Đoạn này hơi rối xíu, ông để ý kỹ nhé, nhận thấy ta có 2 dữ kiện đã biết, là: \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=\dfrac{9}{5}and\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{3}{5}\) có gì đó liên quan đến hằng đẳng thức, nên ta sẽ sử dụng luôn
\(\int\limits^1_0\left[f'\left(x\right)+tx^2\right]^2dx=0\)
\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+2t\int\limits^1_0x^2f'\left(x\right)dx+t^2\int\limits^1_0x^4dx=0\)
\(\Leftrightarrow\dfrac{9}{5}+\dfrac{6}{5}t+\dfrac{1}{5}t^2=0\) \(\left(\int\limits^1_0x^4dx=\dfrac{1}{5}x^5|^1_0=\dfrac{1}{5}\right)\)\(\)\(\Leftrightarrow t=-3\Rightarrow\int\limits^1_0\left[f'\left(x\right)-3x^2\right]^2dx=0\)
\(\Leftrightarrow f'\left(x\right)=3x^2\Leftrightarrow f\left(x\right)=x^3+C\)
\(\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0x^3dx=\dfrac{1}{4}x^4|^1_0=\dfrac{1}{4}\)
P/s: Có gì ko hiểu hỏi mình nhé !
cho f(x) dương liên tục trên [0;1] f(0)=1. Biết \(3\int_0^1\left[f'\left(x\right)\left[f\left(x\right)\right]^2+\frac{1}{9}\right]dx\le2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\) . Tính \(\int_0^1\left[f\left(x\right)\right]^3dx\)
\(3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]dx\le2\int\limits^1_0\sqrt{f'\left(x\right)}f\left(x\right)dx\) (1)
Ta lại có:
\(3f'\left(x\right).f^2\left(x\right)+\frac{1}{3}\ge2\sqrt{f'\left(x\right)}.f\left(x\right)\)
\(\Rightarrow3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]\ge2\int\limits^1_0\sqrt{f'\left(x\right)}.f\left(x\right)dx\) (2)
Từ (1); (2) \(\Rightarrow3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]dx=2\int\limits^1_0\sqrt{f'\left(x\right)}.f\left(x\right)dx\)
Dấu "=" xảy ra khi và chỉ khi:
\(3f'\left(x\right).f^2\left(x\right)=\frac{1}{3}\Rightarrow3\int f'\left(x\right).f^2\left(x\right)dx=\int\frac{1}{3}dx\)
\(\Rightarrow f^3\left(x\right)=\frac{x}{3}+C\)
Thay \(x=0\Rightarrow f^3\left(0\right)=C\Rightarrow C=1\)
\(\Rightarrow f^3\left(x\right)=\frac{x}{3}+1\Rightarrow\int\limits^1_0f^3\left(x\right)dx=\int\limits^1_0\left(\frac{x}{3}+1\right)dx=\frac{7}{6}\)
\(\int_0^1\left|x^4-\left(-x+2\right)^2\right|dx\)
Ta có: \(x^4-\left(-x+2\right)^2=\left(x^2-x+2\right)\left(x^2+x-2\right)\)
\(=\left(x^2-x+2\right)\left(x+2\right)\left(x-1\right)\le0\) ; \(\forall x\in\left(0;1\right)\)
\(\Rightarrow\int\limits^1_0\left|x^4-\left(-x+2\right)^2\right|dx=\int\limits^1_0\left[\left(-x+2\right)^2-x^4\right]dx\)
\(=\int\limits^1_0\left(x^2-4x+4-x^4\right)dx=\dfrac{32}{15}\)
1)\(\int_1^e\left(\frac{lnx}{x}\right)^2dx\)
2)\(\int_0^{\frac{\pi}{4}}\frac{x}{1+cos2x}dx\)
3)\(\int_0^{\frac{\pi}{4}}\frac{ln\left(cosx\right)}{cos^2x}dx\)
Câu 1)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{-1}{x}\end{matrix}\right.\)
\(\int \left ( \frac{\ln}{x} \right )^2dx=\frac{-\ln^2x}{x}+2\int \frac{\ln x}{x^2}dx\)
Đặt \(\left\{\begin{matrix} t=\ln x\\ dk=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dt=\frac{1}{x}dx\\ k=-\frac{1}{x}\end{matrix}\right.\Rightarrow \int \frac{\ln x}{x^2}dx=-\frac{\ln x}{x}+\int \frac{1}{x^2}dx=\frac{-\ln x}{x}-\frac{1}{x}\)
\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|\left(\frac{-\ln^2 x}{x}-\frac{2\ln x}{x}-\frac{2}{x}\right)=2-\frac{5}{e}\)
Câu 2)
\(I=\int ^{\frac{\pi}{4}}_{0}\frac{x}{1+\cos 2x}dx=\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{x}{\cos^2x}dx\)
Đặt \(\left\{\begin{matrix} u=x\\ dv=\frac{dx}{\cos^2x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\tan x\end{matrix}\right.\Rightarrow I=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{x\tan x}{2}-\frac{1}{2}\int^{\frac{\pi}{4}}_{0} \tan xdx\)
\(=\frac{\pi}{8}+\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{d(\cos x)}{\cos x}=\frac{\pi}{8}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{\ln |\cos x|}{2}=\frac{\pi}{8}+\frac{\ln\frac{\sqrt{2}}{2}}{2}\)
Câu 3)
Đặt \(\left\{\begin{matrix} u=\ln (\cos x)\\ dv=\frac{dx}{\cos^2x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{-\sin x}{\cos x}dx=-\tan xdx\\ v=\tan x\end{matrix}\right.\)
\(\Rightarrow I=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\tan x\ln (\cos x)+\int ^{\frac{\pi}{4}}_{0}\tan^2xdx=\ln \frac{\sqrt{2}}{2}+\int ^{\frac{\pi}{4}}_{0}(\frac{1}{\cos^2x}-1)dx\)
\(=\ln\frac{\sqrt{2}}{2}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|(\tan x-x)=\ln \frac{\sqrt{2}}{2}-\frac{\pi}{4}+1\)
cho hàm số y=f(x) liên tục trên [0;π/2] thỏa \(\int_0^{\frac{\pi}{2}}f^2\left(x\right)dx=3\pi\) , \(\int_0^{\pi}\left(\sin x-x\right)f'\left(\frac{x}{2}\right)dx=6\pi\) ; \(f\left(\frac{\pi}{2}\right)=0\) Tính \(\int_0^{\frac{\pi}{2}}\left(f''\left(x\right)\right)^3dx\)
giúp em với ạ.
1) \(\int ln^3xdx\)
2) \(\int_0^1\left(x+sin^2x\right)c\text{os}xdx\)
3)\(\int x\left(e^{2x}+\sqrt[3]{x+1}\right)dx\)
Câu 1)
\(I=\int \ln ^3 xdx\). Đặt \(\left\{\begin{matrix} u=\ln ^3x\\ dv=dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{3\ln ^2x}{x}dx\\ v=x\end{matrix}\right.\)
\(\Rightarrow I=x\ln ^3x-3\int \ln^2xdx\)
Tiếp tục nguyên hàm từng phần cho \(\int \ln ^2xdx\) như trên, ta suy ra:
\(\int\ln ^2xdx=x\ln^2x-2\int \ln x dx\).
Tiếp tục nguyên hàm từng phần cho \(\int \ln xdx\Rightarrow \int \ln xdx=x\ln x-x+c\)
Do đó mà \(I=x\ln ^3x-3(x\ln^2x-2x\ln x+2x)+c\)
\(\Leftrightarrow I=x\ln^3x-3x\ln^2x+6x\ln x-6x+c\)
Câu 2)
\(I=\int ^{1}_{0}(x+\sin ^2x)\cos x dx=\int ^{1}_{0}x\cos xdx+\int ^{1}_{0}\sin^2x\cos xdx\)
Đặt \(\left\{\begin{matrix} u=x\\ dv=\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\sin x\end{matrix}\right.\Rightarrow \int x\cos xdx=x\sin x-\int \sin xdx=x\sin x+\cos x+c\)
\(\Rightarrow \int ^{1}_{0} x\cos xdx=\sin 1+\cos 1-1\)
Còn \(\int ^{1}_{0}\sin^2x\cos xdx=\int ^{1}_{0}\sin ^2xd(\sin x)=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\sin ^3x}{3}=\frac{\sin^31}{3}\)
\(\Rightarrow I=-1+\sin 1+\cos 1+\frac{\sin ^3 1}{3}\approx 0,0173\)
Câu 3:
Đối với \(\int xe^{2x}dx\)
\(\left\{\begin{matrix} u=x\\ dv=e^{2x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\int e^{2x}dx=\frac{e^{2x}}{2}\end{matrix}\right.\)
\(\Rightarrow \int xe^{2x}=\frac{1}{2}xe^{2x}-\frac{1}{2}\int e^{2x}dx=\frac{1}{2}xe^{2x}-\frac{1}{4}e^{2x}+c\)
Đối với \(\int x\sqrt[3]{x+1}dx=\int \sqrt[3]{(x+1)^4}dx-\int \sqrt{x+1}dx=\frac{3(x+1)^\frac{7}{3}}{7}-\frac{3}{4}(x+1)^{\frac{4}{3}}+c\)
\(\Rightarrow \int x\sqrt[3]{x+1}dx=\frac{3(x+1)^{\frac{4}{3}}(4x-3)}{28}\)
Do đó mà \(\int x(e^{2x}-\sqrt[3]{x+1})dx=\frac{1}{2}xe^{2x}-\frac{1}{4}e^{2x}+\frac{3(x+1)^{\frac{4}{3}}(4x-3)}{28}+c\)