Cho hàm số y=f(x) liên tục trên [0;+\(\infty\)] và \(\int_0^{x^2}f\left(t\right)dt=x.sin\pi x\). Tính f(4)
cho f(x) dương liên tục trên [0;1] f(0)=1. Biết \(3\int_0^1\left[f'\left(x\right)\left[f\left(x\right)\right]^2+\frac{1}{9}\right]dx\le2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\) . Tính \(\int_0^1\left[f\left(x\right)\right]^3dx\)
Cho hàm số \(y=f\left(x\right)\) có đạo hàm và liên tục trên \(\left[0;\dfrac{\pi}{2}\right]\)thoả mãn \(f\left(x\right)=f'\left(x\right)-2cosx\). Biết \(f\left(\dfrac{\pi}{2}\right)=1\), tính giá trị \(f\left(\dfrac{\pi}{3}\right)\)
A. \(\dfrac{\sqrt{3}+1}{2}\) B. \(\dfrac{\sqrt{3}-1}{2}\) C. \(\dfrac{1-\sqrt{3}}{2}\) D. 0
40/HT
Cho hàm số f(x) có f(0) = 0 và f'(x) = sin4x. Tính tích phân \(\int_0^{\frac{\pi}{2}}f\left(x\right)dx\)
Cho hàm số f(x) liên tục trên \([-\Pi;\Pi]\)
Chứng minh: \(\int\limits^{\Pi}_0x.f\left(sinx\right)dx=\dfrac{\Pi}{2}\int\limits^{\Pi}_0f\left(sinx\right)dx\)
Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định và thoả mản \(\int\limits^{\frac{\pi}{8}}_0f\left(2x\right)dx=\frac{1}{2\sqrt{2}}\) và \(f\left(x\right)^2+f’\left(x\right)^2=1\). Khi này tính \(f\left(f\left(\frac{\pi}{2}\right).\pi\right)\) bằng:
a) 0
b) -1
c) 1
d) 2
Cho f(x) liên tục trên R thỏa mãn \(\int_0^{\frac{1}{2}}f\left(\sqrt{1-2x^2}\right)dx\) = \(\frac{7}{6}\) và f (\(\frac{1}{\sqrt{2}}\)) =1. Tính I = \(\int_0^{\frac{\Pi}{4}}f'\left(cosx\right)sin^2xdx\)
A. \(\frac{1}{2}\) B.\(\frac{\sqrt{2}}{3}\) C. \(\frac{2\sqrt{2}}{3}\) D. 1
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).
Cho hàm số f(x) xác định và liên tục trên [0;1], thỏa mãn f'(x)=f'(1-x) với mọi x thuộc [0;1]. Biết rằng f(0)=1; f(1)=41. Tính tích phân I=\(\int_0^1f\left(x\right)dx\)