Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Nhat Phuong
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
1 tháng 9 2017 lúc 20:51

 P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy) 

= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]

= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)

Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz) 

Suy ra: 

P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz) 

≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2 

Vậy P min = 9/2 

Dấu = xra khi x = y = z = 1 

Le Nhat Phuong
1 tháng 9 2017 lúc 20:52

Bài 1: 
Ta có 
A =x/(x+1) +y/(y+1)+z/(z+1) 
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1) 
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ] 
B = 1/(x+1)+1/(y+1) +1/(z+1) 
Đặt x+1=a; y+1=b;z+1 =c 
=>a+b+c=4 
4B=4(1/a+1/b+1/c) 
B= (a+b+c) (1/a+1/b+1/c) 
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a) 

Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab 
=> a/b+b/a ≥2 dấu "=" khi a=b 
Tương tự có 
a/c+c/a ≥2 ;b/c+c/b ≥2 
=>4B ≥3+2+2+2=9 
=>B ≥ 9/4 
=>A ≤ 3-9/4 = 3/4 
Vậy max A =3/4 khi a=b=c 
=>x=y=z =1/3 

Bài 2:

Giúp tui nha

lữ thị xuân nguyệt
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2020 lúc 22:29

\(P=\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}\Rightarrow2P=\frac{2}{2+a}+\frac{2}{2+b}+\frac{2}{2+c}\)

\(\Rightarrow3-2P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+6}\)

\(3-2P\ge\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{a+b+c+6}\ge\frac{a+b+c+6\sqrt[6]{a^2b^2c^2}}{a+b+c+6}=\frac{a+b+c+6}{a+b+c+6}=1\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

camcon
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 12 2021 lúc 0:08

\(P=bc.1.\sqrt{a-1}+\dfrac{ca}{3}.3.\sqrt{b-9}+\dfrac{ab}{4}.4.\sqrt{c-16}\)

\(P\le\dfrac{bc}{2}\left(1+a-1\right)+\dfrac{ca}{6}\left(9+b-9\right)+\dfrac{ab}{8}\left(16+c-16\right)\)

\(\Rightarrow P\le\dfrac{abc}{2}+\dfrac{abc}{6}+\dfrac{abc}{8}=912\)

\(P_{max}=912\)  khi \(\left(a;b;c\right)=\left(2;18;32\right)\)

Nguyễn Ngọc Huyền Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 20:06

Áp dụng bđt Cauchy , ta có : 

\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)

Dấu "=" xảy ra khi a = b = c = 1

Vậy Min P = 8 <=> a = b = c = 1

nguyễn thị mai linh
Xem chi tiết
Lương Ngọc Anh
16 tháng 5 2016 lúc 22:10

ta có: \(a+1>=2\sqrt{a};b+1>=2\sqrt{b};c+1>=2\sqrt{c}\)

=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)>=8\sqrt{abc}=8\)

Vậy min P=8.Dấu = khi a=b=c=1.

Nguyễn Hoàng Tiến
16 tháng 5 2016 lúc 22:15

Áp dụng BĐT Cô-si, ta lần lượt có:

\(a+1\ge\sqrt{a};b+1\ge\sqrt{b};c+1\ge\sqrt{c}\)

Vậy \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}=8\sqrt{a\times b\times c}=8\)

Dấu bằng xảy ra khi a=b=c=1

Bảo My
Xem chi tiết
Ngu Ngu Ngu
28 tháng 4 2017 lúc 17:26

Giải:

Áp dụng BĐT Cô-si ta có: 

\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)

\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)

\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)

Nhân vế theo vế ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(2.2.2\right)\left(\sqrt{a}.\sqrt{b}.\sqrt{c}\right)\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8.\sqrt{abc}=8.\sqrt{1}=8\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(P_{min}=8\) tại \(\Leftrightarrow a=b=c=1\)

Doraemon
Xem chi tiết
nguyễn thị mai linh
Xem chi tiết
Nguyễn Hoàng Tiến
17 tháng 5 2016 lúc 17:48

Nhận xét: a;b;c >0 nên theo BĐT Cô - si, ta có:

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}\)

<=> \(P\ge8\sqrt{abc}=8\times1=8\)

Vậy P đạt GTNN tại P=8 <=> a= b=c=1

Hoàng Tử của dải Ngân Hà
17 tháng 5 2016 lúc 17:57

Nhận xét: a;b;c >0 nên theo BĐT Cô - si, ta có:

$a+1\ge2\sqrt{a}$

$b+1\ge2\sqrt{b}$$c+1\ge2\sqrt{c}$=> $\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}$<=> $P\ge8\sqrt{abc}=8\times1=8$Vậy P đạt GTNN tại P=8 <=> a= b=c=1

Song Minguk
Xem chi tiết
Hà Ngân Hà
20 tháng 5 2016 lúc 13:14

p=(a+1)(b+1)(c+1)

Vì a,b,c>0 áp dụng BĐT cosi ta có:

a+1\(\ge\)2\(\sqrt{a.1}\)=2\(\sqrt{a}\)(1)

b+1\(\ge\)2\(\sqrt{b.1}\)=2\(\sqrt{b}\)(2)

c+1\(\ge\)2\(\sqrt{c.1}\)=2\(\sqrt{c}\)(3)

Nhân vế với vế của(1);(2) và (3) ta có:

P=(a+1)(b+1)(c+1) \(\ge\)2.\(\sqrt{a}\).2.\(\sqrt{b}\).2.\(\sqrt{c}\)

P=(a+1)(b+1)(c+1)\(\ge\)8.\(\sqrt{abc}\)=8

Vậy P đạt giá trị nhỏ nhất là 8 dấu = xảy ra khi a=b=c=1

No_pvp
12 tháng 7 2023 lúc 16:39

Mày nhìn cái chóa j