Cho a, b, c>0 và a.b.c=1. Tìm GTLN của a+b+c
bài 1:cho x,y,z >0 x+y+z=1.Tìm GTLN của x/x+1+y/y+1+z/z+1
bài 2 : tìm GTNN của P=ab+bc+ca/a^2+b^2+c^2+(a+b+c)^3/abc với a.b.c>0
P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy)
= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]
= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz)
Suy ra:
P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2
Vậy P min = 9/2
Dấu = xra khi x = y = z = 1
Bài 1:
Ta có
A =x/(x+1) +y/(y+1)+z/(z+1)
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1)
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ]
B = 1/(x+1)+1/(y+1) +1/(z+1)
Đặt x+1=a; y+1=b;z+1 =c
=>a+b+c=4
4B=4(1/a+1/b+1/c)
B= (a+b+c) (1/a+1/b+1/c)
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a)
Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab
=> a/b+b/a ≥2 dấu "=" khi a=b
Tương tự có
a/c+c/a ≥2 ;b/c+c/b ≥2
=>4B ≥3+2+2+2=9
=>B ≥ 9/4
=>A ≤ 3-9/4 = 3/4
Vậy max A =3/4 khi a=b=c
=>x=y=z =1/3
Bài 2:
Giúp tui nha
cho a,b,c >0 và a.b.c=1 tìm gtln của \(\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}\)
\(P=\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}\Rightarrow2P=\frac{2}{2+a}+\frac{2}{2+b}+\frac{2}{2+c}\)
\(\Rightarrow3-2P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+6}\)
\(3-2P\ge\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{a+b+c+6}\ge\frac{a+b+c+6\sqrt[6]{a^2b^2c^2}}{a+b+c+6}=\frac{a+b+c+6}{a+b+c+6}=1\)
\(\Rightarrow2P\le2\Rightarrow P\le1\)
Cho \(a\ge1;b\ge9;c\ge16\) và a.b.c = 1152
Tìm GTLN của biểu thức \(P=bc\sqrt{a-1}+ca\sqrt{b-9}+ab\sqrt{c-16}\)
\(P=bc.1.\sqrt{a-1}+\dfrac{ca}{3}.3.\sqrt{b-9}+\dfrac{ab}{4}.4.\sqrt{c-16}\)
\(P\le\dfrac{bc}{2}\left(1+a-1\right)+\dfrac{ca}{6}\left(9+b-9\right)+\dfrac{ab}{8}\left(16+c-16\right)\)
\(\Rightarrow P\le\dfrac{abc}{2}+\dfrac{abc}{6}+\dfrac{abc}{8}=912\)
\(P_{max}=912\) khi \(\left(a;b;c\right)=\left(2;18;32\right)\)
Cho a, b, c > 0 và a.b.c =1 . Tìm GTNN của biểu thức sau:
P = (a+1)(b+ 1)(c+ 1)
Áp dụng bđt Cauchy , ta có :
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
Dấu "=" xảy ra khi a = b = c = 1
Vậy Min P = 8 <=> a = b = c = 1
cho a,b,c>0 và a.b.c =1.Tìm giá trị nhỏ nhất của biểu thức :
P=(a+1).(b+1).(c+1)
ta có: \(a+1>=2\sqrt{a};b+1>=2\sqrt{b};c+1>=2\sqrt{c}\)
=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)>=8\sqrt{abc}=8\)
Vậy min P=8.Dấu = khi a=b=c=1.
Áp dụng BĐT Cô-si, ta lần lượt có:
\(a+1\ge\sqrt{a};b+1\ge\sqrt{b};c+1\ge\sqrt{c}\)
Vậy \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}=8\sqrt{a\times b\times c}=8\)
Dấu bằng xảy ra khi a=b=c=1
Cho a,b,c > 0 và a.b.c = 1.Tìm giá trị nhỏ nhất của biểu thức sau:
P = (a + 1)(b + 1)(c + 1)
Giải:
Áp dụng BĐT Cô-si ta có:
\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)
\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)
\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)
Nhân vế theo vế ta được:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(2.2.2\right)\left(\sqrt{a}.\sqrt{b}.\sqrt{c}\right)\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8.\sqrt{abc}=8.\sqrt{1}=8\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy \(P_{min}=8\) tại \(\Leftrightarrow a=b=c=1\)
Cho a, b, c > 0 và a.b.c = 1. Tìm giá trị nhỏ nhất của biểu thức sau: P = (a + 1)(b + 1)(c + 1)
có a,b,c>0 và a.b.c=1 tìm GTNN của :
P=(a+1).(b+1).(c+1)
Nhận xét: a;b;c >0 nên theo BĐT Cô - si, ta có:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}\)
<=> \(P\ge8\sqrt{abc}=8\times1=8\)
Vậy P đạt GTNN tại P=8 <=> a= b=c=1
Nhận xét: a;b;c >0 nên theo BĐT Cô - si, ta có:
$a+1\ge2\sqrt{a}$
$b+1\ge2\sqrt{b}$$c+1\ge2\sqrt{c}$=> $\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}$<=> $P\ge8\sqrt{abc}=8\times1=8$Vậy P đạt GTNN tại P=8 <=> a= b=c=1
Cho a, b, c > 0 và a.b.c = 1.
Tìm giá trị nhỏ nhất của biểu thức sau: P = (a + 1)(b + 1)(c + 1)
p=(a+1)(b+1)(c+1)
Vì a,b,c>0 áp dụng BĐT cosi ta có:
a+1\(\ge\)2\(\sqrt{a.1}\)=2\(\sqrt{a}\)(1)
b+1\(\ge\)2\(\sqrt{b.1}\)=2\(\sqrt{b}\)(2)
c+1\(\ge\)2\(\sqrt{c.1}\)=2\(\sqrt{c}\)(3)
Nhân vế với vế của(1);(2) và (3) ta có:
P=(a+1)(b+1)(c+1) \(\ge\)2.\(\sqrt{a}\).2.\(\sqrt{b}\).2.\(\sqrt{c}\)
P=(a+1)(b+1)(c+1)\(\ge\)8.\(\sqrt{abc}\)=8
Vậy P đạt giá trị nhỏ nhất là 8 dấu = xảy ra khi a=b=c=1