Số nguyên dương x thỏa mãn \(x-2\sqrt{x}=0\)
Số nguyên dương x thỏa mãn x - 2\(\sqrt{x}\)=0 là x=...
căn x ( căn x -2 ) = 0
=> căn x -2 = 0
căn x = 2
x = 4
Có bao nhiêu số nguyên dương m thỏa mãn phương trình :
\(9^{1+\sqrt{1-x^2}}-\left(m+2\right)3^{1+\sqrt{1-x^2}}+2m+1=0\) có nghiệm ?
\(1\le1+\sqrt{1-x^2}\le2\Rightarrow3\le3^{1+\sqrt{1-x^2}}\le9\)
Đặt \(3^{1+\sqrt{1-x^2}}=t\Rightarrow t\in\left[3;9\right]\)
Phương trình trở thành: \(t^2-\left(m+2\right)t+2m+1=0\)
\(\Leftrightarrow t^2-2t+1=m\left(t-2\right)\Leftrightarrow m=\dfrac{t^2-2t+1}{t-2}\)
Xét hàm \(f\left(t\right)=\dfrac{t^2-2t+1}{t-2}\) trên \(\left[3;9\right]\)
\(f'\left(t\right)=\dfrac{t^2-4t+3}{\left(t-2\right)^2}\ge0\) ; \(\forall t\in\left[3;9\right]\Rightarrow f\left(t\right)\) đồng biến trên khoảng đã cho
\(\Rightarrow f\left(3\right)\le f\left(t\right)\le f\left(9\right)\Rightarrow4\le m\le\dfrac{64}{7}\)
Có 6 giá trị nguyên của m
Bài 1:Cho x, y là các số nguyên dương thỏa mãn x+y= 3.\(\sqrt{xy}\).Tinh x/ y
Bài 2: Tìm các số nguyên dương x, y thỏa mãn (1/x)+(1/y)=1/2
Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)
vi x la so nguyen Dưỡng nen x-2 la so nguyen duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6
Voi x=3 => y= 6
voi x=6=> y=3
vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)
.....
Sau khi chi ra x-2 la uoc nguyen duong cua 4
Co 3 Truong hop
x-2 =1; x-2=2;x-2=4
Tu do tinh duoc x=3;x=4;x=6. Suy ra cac gia tri tuong ung cua y
co 3 cap so nguyen duong x, y can Tim:(3;6);(4 ;4);(6;3)
Số nguyên dương x nhỏ nhất thỏa mãn \(\sqrt{x}-\sqrt{x-1}< \dfrac{1}{100}\) là?
Ta có \(\sqrt{x}-\sqrt{x-1}< \dfrac{1}{100}\Leftrightarrow\dfrac{1}{\sqrt{x}+\sqrt{x-1}}< \dfrac{1}{100}\Leftrightarrow\sqrt{x}+\sqrt{x-1}>100\).
Đến đây dùng pp kẹp ta tìm được số nguyên dương x nhỏ nhất thỏa mãn là x = 2501.
số nguyên dương x thỏa mãn (x^2-19)(x^2-30)<0
Số nguyên dương x thỏa mãn :(x^2-19)(x^2-30)<0
giải pt :
a,\(x^2+2x+3=\sqrt{x^2+3x}\)
b, Cho x,y là các số nguyên dương thỏa mãn x+y =2001
Tìm GTNN của \(P=\sqrt{2+xy}\)
Cho hàm số \(f\left(x\right)=e^{\sqrt{x^2+1}}\left(e^x-e^{-x}\right)\). Có bao nhiêu số nguyên dương m thỏa mãn bất phương trình \(f\left(m-7\right)+f\left(\dfrac{12}{m+1}\right)< 0\) ?
Lời giải:
Đặt $\sqrt{x^2+1}+x=a$ thì:
$f(a)=e^a-e^{\frac{1}{a}}$
$f'(a)=e^a+\frac{1}{a^2}.e^{\frac{1}{a}}>0$ với mọi $a$
Do đó hàm $f(a)$ là hàm đồng biến hay $f(x)$ là hàm đồng biến trên R
$\Rightarrow f(x)> f(0)=0$ với mọi $x>0$
$\Rightarrow f(\frac{12}{m+1})>0$ với $m$ nguyên dương
Do đó để $f(m-7)+f(\frac{12}{m+1})<0$ thì $f(m-7)<0$
$\Rightarrow m-7<0$
Mặt khác, dễ thấy: $f(x)+f(-x)=0$. Bây h xét:
$m=1$ thì $f(m-7)+f(\frac{12}{m+1})=f(-6)+f(6)=0$ (loại)
$m=2$ thì $f(m-7)+f(\frac{12}{m+1})=f(-5)+f(4)=f(4)-f(5)<0$ (chọn)
$m=3$ thì $f(m-7)+f(\frac{12}{m+1})=f(-4)+f(3)=f(3)-f(4)<0$ (chọn)
$m=4$ thì $f(m-7)+f(\frac{12}{m+1})=f(-3)+f(2,4)=f(2,4)-f(3)<0$ (chọn)
$m=5$ thì $f(m-7)+f(\frac{12}{m+1})=f(-2)+f(2)=0$ (loại)
$m=6$ thì $f(m-7)+f(\frac{12}{m+1})=f(-1)+f(12/7)>f(-1)+f(1)=0$ (loại)
Vậy có 3 số tm
Số nguyên dương thỏa mãn:(x^2-19)(x^2-30)<0
nhận thấy: x^2-19>x^2-30 (vì -19>-30)
=>x^2-19>0 =>x^2>19(1)
và x^2-30<0=>x^2<30 (2)
từ (1) và (2)=>19<x^2<30
=>x^2=25=>x=+5
mà x nguyên dương nên x=5
nhớ liike