Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cát Tường Anh Nguyễn
Xem chi tiết
Khinh Yên
16 tháng 12 2021 lúc 10:20

b d a b d b b b b b c c b

trinhthikhanhvy
Xem chi tiết
Lương Đại
7 tháng 1 2022 lúc 15:18

8,B

9,D

10, A

11, C

12, B

13, A

14, C

15, D

Phan Huy Bằng
7 tháng 1 2022 lúc 15:19

8.D

10.A

12.B

Mik chỉ bt mấy câu này thui

THANH TRIET SPEED CUBER
7 tháng 1 2022 lúc 15:22

8.B

9.D

10.A

11.A

12.B

13.A

14.C

15.A

Tuấn Anh
Xem chi tiết
Kit GH
11 tháng 1 2022 lúc 20:11

21. D - at

22. D - was

23. A - Although

24 B - causes

 

Thu Hồng
12 tháng 1 2022 lúc 0:33

21. D - at

22. B - which

23. A - Although

24. B - on

Tùng Vũ
Xem chi tiết
Lam Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 22:56

uses crt;

var n:integer;

begin

clrscr;

readln(n);

if n mod 2=0 then writeln(n,' la so chan')

else writeln(n,' la so le');

readln;

end.

PG3D VN
Xem chi tiết
Đỗ Tuệ Lâm
8 tháng 1 2022 lúc 15:34

3C

4A

5B

6D

7C

8C

9A

10B

 

Nguyên Le
Xem chi tiết
DƯƠNG HỒNG DIỄM
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:54

4.

\(\lim\limits_{x\rightarrow8}f\left(x\right)=\lim\limits_{x\rightarrow8}\dfrac{\sqrt[3]{x}-2}{x-8}=\lim\limits_{x\rightarrow8}\dfrac{x-8}{\left(x-8\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}=\lim\limits_{x\rightarrow8}\dfrac{1}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}\)

\(=\dfrac{1}{4+4+4}=\dfrac{1}{12}\)

\(f\left(8\right)=3.8-20=4\)

\(\Rightarrow\lim\limits_{x\rightarrow8}f\left(x\right)\ne f\left(8\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=8\)

5.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{1+2x}-1+1-\sqrt[3]{1+3x}}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{2x}{\sqrt[]{1+2x}+1}-\dfrac{3x}{1+\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{2}{\sqrt[]{1+2x}+1}-\dfrac{3}{1+\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)=\dfrac{2}{1+1}-\dfrac{3}{1+1+1}=0\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(3x^2-2x\right)=0\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Rightarrow\) Hàm liên tục tại \(x=0\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:59

6.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{4x+1}-\sqrt[3]{6x+1}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{4x+1}-\left(2x+1\right)+\left(2x+1-\sqrt[3]{6x+1}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{-x^2}{\sqrt[]{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{-1}{\sqrt[]{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)

\(=\dfrac{-1}{1+1}+\dfrac{12}{1+1+1}=\dfrac{7}{2}\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2-3x\right)=2\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)\ne\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 22:03

7.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{1+2x}-\left(x+1\right)+\left(x+1-\sqrt[3]{1+3x}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{-x^2}{\sqrt[]{1+2x}+x+1}+\dfrac{x^2\left(x+3\right)}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{-1}{\sqrt[]{1+2x}+x+1}+\dfrac{x+3}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)\)

\(=\dfrac{-1}{1+1}+\dfrac{3}{1+1+1}=1\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2x+3\right)=3\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)\ne\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)