Chương 4: GIỚI HẠN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Linh

Mọi người giúp em mấy câu này với ạ!! Một vài câu cũng được mà làm hết thì càng tốt

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:54

4.

\(\lim\limits_{x\rightarrow8}f\left(x\right)=\lim\limits_{x\rightarrow8}\dfrac{\sqrt[3]{x}-2}{x-8}=\lim\limits_{x\rightarrow8}\dfrac{x-8}{\left(x-8\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}=\lim\limits_{x\rightarrow8}\dfrac{1}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}\)

\(=\dfrac{1}{4+4+4}=\dfrac{1}{12}\)

\(f\left(8\right)=3.8-20=4\)

\(\Rightarrow\lim\limits_{x\rightarrow8}f\left(x\right)\ne f\left(8\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=8\)

5.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{1+2x}-1+1-\sqrt[3]{1+3x}}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{2x}{\sqrt[]{1+2x}+1}-\dfrac{3x}{1+\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{2}{\sqrt[]{1+2x}+1}-\dfrac{3}{1+\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)=\dfrac{2}{1+1}-\dfrac{3}{1+1+1}=0\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(3x^2-2x\right)=0\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Rightarrow\) Hàm liên tục tại \(x=0\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:59

6.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{4x+1}-\sqrt[3]{6x+1}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{4x+1}-\left(2x+1\right)+\left(2x+1-\sqrt[3]{6x+1}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{-x^2}{\sqrt[]{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{-1}{\sqrt[]{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)

\(=\dfrac{-1}{1+1}+\dfrac{12}{1+1+1}=\dfrac{7}{2}\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2-3x\right)=2\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)\ne\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 22:03

7.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{1+2x}-\left(x+1\right)+\left(x+1-\sqrt[3]{1+3x}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{-x^2}{\sqrt[]{1+2x}+x+1}+\dfrac{x^2\left(x+3\right)}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{-1}{\sqrt[]{1+2x}+x+1}+\dfrac{x+3}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)\)

\(=\dfrac{-1}{1+1}+\dfrac{3}{1+1+1}=1\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2x+3\right)=3\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)\ne\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 22:15

9.

\(\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\left(\sqrt[]{1+x^2}+x\right)^4-\left(\sqrt[]{1+x^2}-x\right)^4}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\left[\left(\sqrt[]{1+x^2}+x\right)^2+\left(\sqrt[]{1+x^2}-x\right)^2\right]\left[\left(\sqrt[]{1+x^2}+x\right)^2-\left(\sqrt[]{1+x^2}-x\right)^2\right]}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\left[\left(\sqrt[]{1+x^2}+x\right)^2+\left(\sqrt[]{1+x^2}-x\right)^2\right].2\sqrt[]{1+x^2}.2x}{x}\)

\(=\lim\limits_{x\rightarrow0}4\sqrt[]{1+x^2}.\left[\left(\sqrt[]{1+x^2}+x\right)^2+\left(\sqrt[]{1+x^2}-x\right)^2\right]\)

\(=4.1.\left(1+1\right)=8\)

\(f\left(0\right)=3.0+8=8\)

\(\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\)

Hàm liên tục tại \(x=0\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 22:16

8.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\left(1+2020x\right)^{2021}-\left(1+2021x\right)^{2020}}{2021x^2}\)

(Mũ quá to nên thêm bớt HĐT hoặc khai triển nhị thức Newton sẽ tạo ra 1 biểu thức phức tạp, do đó để đơn giản chúng ta sẽ sử dụng quy tắc L'Hopital để tính giới hạn)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{2020.2021\left(1+2020x\right)^{2020}-2020.2021\left(1+2021x\right)^{2019}}{2.2021x}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{2020\left(1+2020x\right)^{2020}-2020\left(1+2021x\right)^{2019}}{2x}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{2020^3\left(1+2020x\right)^{2019}-2019.2020.2021\left(1+2021x\right)^{2018}}{2}\)

\(=\dfrac{2020^3-2019.2020.2021}{2}=1010\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(x^2+1010\right)=1010\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Rightarrow\)Hàm liên tục tại \(x=0\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 22:21

Câu 8 ko để ý kĩ đề, sửa lại đoạn \(\lim\limits_{x\rightarrow0^+}...\) thành \(\lim\limits_{x\rightarrow0}...\) và \(\lim\limits_{x\rightarrow0^-}...\) thành \(f\left(0\right)\)

10.

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\left(\sqrt[]{x}-1\right)\left(\sqrt[3]{x}-1\right)\left(\sqrt[4]{x}-1\right)}{\left(x^2-1\right)^3}\)

\(=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{\left(x-1\right)}{\sqrt[]{x}+1}.\dfrac{x-1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}.\dfrac{x-1}{\left(\sqrt[4]{x}+1\right)\left(\sqrt[]{x}+1\right)}}{\left(x-1\right)^3\left(x+1\right)^3}\)

\(=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\left(x+1\right)^3\left(\sqrt[]{x}+1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)\left(\sqrt[4]{x}+1\right)\left(\sqrt[]{x}+1\right)}\)

\(=\dfrac{1}{2^3.2.3.2.2}=\dfrac{1}{192}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(3-x\right)=2\)

\(\Rightarrow\lim\limits_{x\rightarrow1^+}f\left(x\right)\ne\lim\limits_{x\rightarrow1^-}f\left(x\right)\)

Hàm gián đoạn tại \(x=1\)


Các câu hỏi tương tự
tiêu chí 14
Xem chi tiết
Trung Nguyễn
Xem chi tiết
Minh
Xem chi tiết
doan thanh diem quynh
Xem chi tiết
Shan darren
Xem chi tiết
Shan darren
Xem chi tiết
Shan darren
Xem chi tiết
Shan darren
Xem chi tiết
énbhj
Xem chi tiết