\(\left(cotx\right)^{ln\left(1+x^2\right)}=\left(tanx\right)^{-ln\left(1+x^2\right)}=e^{ln\left[\left(tanx\right)^{-ln\left(1+x^2\right)}\right]}\)
\(=e^{-ln\left(tanx\right).ln\left(1+x^2\right)}\sim e^{-ln\left(x\right).x^2}=e^{-\dfrac{lnx}{x^{-2}}}\)
L'Hopital (bạn tự hiểu là giới hạn khi x->0): \(e^{-\dfrac{1}{-2x.x^{-3}}}=e^{\dfrac{x^2}{2}}=e^0=1\)