\(3x^3-3y^3\)
B=x^3y^3- x^3y^2+3x^2y^3-y^3x^3 tại x=y=1
Tại x = 1 và y = 1 ta có:
B = 1 -1 + 3 -1 = 2
\(x^3y^3-x^3y^2+3x^2y^3x^3=-x^3y^2+3x^2y^3\)
Ta thay x = 1 ; y = 1 vì x = y = 1
Nên ta có : \(-1^3.1^2+3.1^2.1^3=-1.1+3.1.1=-1+3=2\)
Rút gọn
a, (5x+3y).(5x-3y)+(4x-3y)\(^2\)
b, (2x-3y)\(^3\)-(3x+2y)\(^3\)
a) \(\left(5x+3y\right)\left(5x-3y\right)+\left(4x-3y\right)^2\)
\(=25x^2-9y^2+16x^2-24xy+9y^2\)
\(=41x^2-24xy\)
b) \(\left(2x-3y\right)^3-\left(3x+2y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27xy^2-27x^3-54x^2y-36xy^2-8y^3\)
\(=-19x^3-90x^2y+18xy^2-35y^3\)
giải các hệ phương trình
9x-6y=4 và 3(4x-3y)=-3x+y+7
3(x+1)+2y=-x và 5(x+y)=-3x+y-5
2(2x+3y)=3(2x-3y)+10 và 4x-3y=4(6y-2x)+3
giải hệ pt x^3(y^2+3y+3)=3y^2; y^3(z^2+3z+3)=3z^2; z^3(x^2+3x+3)=3x^2
a)(-6x^3y^4+4x^4y^3):2x^3y^3. b)(5x^4y^2-x^3y^2):x^3y^2. c)(27x^3y^5+9x^2y^4-6x^3y^3):(-3x^2y^3)
a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)
\(=-3y+2x\)
b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)
\(=5x-1\)
c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)
\(=-9xy^2-3y+2x\)
a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)
\(=-3y+2x\)
\(=2x-3y\)
b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)
\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)
\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)
\(=5x-1\)
c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)
\(=-9xy^2-3x+2x\)
cho x, y >0 . cmr (2x^2+3y^2)/(2x^3+3y^3)+(2y^2+3x^2)/(2y^3+3x^3)<=4/x+y
thực hiện các phép tính sau:
a,3x^2.(2x^3-x+5)=6x^5-3x^3+15x^2
b,(4xy+3y-5x)x^2y=4x^3y^2+3x^2y^2-5x^3y
Answer:
\(3x^2.\left(2x^3-x+5\right)\)
\(=3x^2.2x^3+3x^2.(-x)+3x^2.5\)
\(=6x^5-3x^3+15x^2\)
\((4xy+3y-5x).x^2y\)
\(=4xy.x^2y+3y.x^2y-5x.x^2y\)
\(=4x^3+3x^2y^2-5x^3y\)
Thu gon biểu thức
\(A=(-{1\over2}x^3y^2z)+{3\over4}x^3y^2z-x^3y^2z\)
\(B=(-xy^2)^3x^3+(0,5xy)^3x^3y^3-{x^6y^6\over2}\)
thu gọn biểu thức .........(cái j zợ)................
Phân tích đa thức sau thành nhân tử
a ) 9(x+y-1)^2 - 4 (2x+3y+1)^2
b ) 3x^4y^2 +3x^3y^2 +3xy^2 +3y^2
c ) ( x+y )^3 - 1 -3xy( x + y -1)
d ) x^3 + 3x^2 + 3x +1 - 27z^3
Bài làm :
\(\text{a)}9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
\(\text{b)}3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)
\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)
\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)
\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
\(\text{c)}\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)
\(d ) x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
C=3x^2y-2xy^2+x^3y^3+3xy^2-2^2y-2x^3y^3
D=15x^2y^3+7y^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3
E=3x^5+1/3xy^4+3/4x^2y^3-1/2x^5y+2xy^4-x^2y^3
tìm bậc