Cho biểu thức A= 5/2x-4 + 7/x+2 - 10/x^2-4
a. Tìm điều kiện của x để A có nghĩa
b. Rút gọn biểu thức A
c. Tính giá trị của A khi x= -1/2
Cho biểu thức: B=3/2x-4+7/x+2-6/x^2-4
a. Tìm điều kiện của x để B có nghĩa
b. Rút gọn biểu thức B
c. Tính giá trị của B khi x=1/4
C1
A= 25x-25-9x-9+ √x-1
a, Tìm điều kiện để A có nghĩa
b,Rút gọn A
c, Tìm x để A=12
C2
Cho biểu thức: P=3x- √x^2 - 10x+25
a, Rút gọn biểu thức
b, Tính giá trị của P khi x=2
Câu 2:
a: Ta có: \(P=3x-\sqrt{x^2-10x+25}\)
\(=3x-\left|x-5\right|\)
\(=\left[{}\begin{matrix}3x-x+5=2x+5\left(x\ge5\right)\\3x+x-5=4x-5\left(x< 5\right)\end{matrix}\right.\)
b: Vì x=2<5 nên \(P=4\cdot2-5=8-5=3\)
Cho biểu thức :
A= x^2+2x/2x+10 + x−5/x + 50−5x/2x(x+5)
a) Tìm điều kiện của biến x để giá trị của biểu thức được xác định
b) rút gọn biểu thức A
c)Tìm giá trị của x để giá trị của biểu thức bằng 1
d)tính A - x/1-x
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
* Cho biểu thức:
A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
a. Tìm điều kiện của x để biểu thức A có nghĩa
b. Rút gọn biểu thức A
c. Tính các giá trị của x để A>0
`a)ĐK:` \(\begin{cases}x \ge 0\\x-\sqrt{x} \ne 0\\x-1 \ne 0\\\end{cases}\)
`<=>` \(\begin{cases}x \ge 0\\x \ne 0\\x \ne 1\\\end{cases}\)
`<=>` \(\begin{cases}x>0\\x \ne 1\\\end{cases}\)
`b)A=(sqrtx/(sqrtx-1)-1/(x-sqrtx)):(1/(1+sqrtx)+2/(x-1))`
`=((x-1)/(x-sqrtx)):((sqrtx-1+2)/(x-1))`
`=(x-1)/(x-sqrtx):(sqrtx+1)/(x-1)`
`=(sqrtx+1)/sqrtx:1/(sqrtx-1)`
`=(x-1)/sqrtx`
`c)A>0`
Mà `sqrtx>0AAx>0`
`<=>x-1>0<=>x>1`
a, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
b, Ta có : \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{x-1}{\sqrt{x}}\)
c, Ta có : \(A>0\)
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
Vậy ...
Cho biểu thức A=-2x-6/x^2-2x - 7/3-x +x/x+1. a)tìm điều kiện để biểu thức A có nghĩa và rút gọn biểu thức A. b) tính giá trị của A khi|x-2|=1
Cho biểu thức:
A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
a) Đặt điều kiện để biểu thức A có nghĩa
b) Rút gọn biểu thức A
c) Với giá trị nào của x thì A > -1
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}\)
\(=2\sqrt{x}-1\)
Cho biểu thức: A = (x/x^2-4-4/2-x+1/x+2):3x+3/x^2+2x
a) Tìm điều kiện xác định của A và rút gọn biểu thức A;
b) Tính giá trị của biểu thức A khi |2x-3|-x+1=0
c) Tìm giá trị nguyên của x để A nhận giá trị nguyên.
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
Cho biểu thức B=(x-1)2-4/(2x+1)2-(x+2)2
a) Tìm điều kiện của biến x để giá trị của biểu thức xác định.
b) Rút gọn B.
c) Tính giá trị của B khi x=-3 và x=1.
d) Tìm x để B=5.
Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)
\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)
viết lại biểu thức
a) \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}=\dfrac{\left(x-1-2\right)\left(x-1+2\right)}{\left(2x+1-x-2\right)\left(2x+1+x+2\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{3\left(x-1\right)\left(x+1\right)}\) (1)
\(\Rightarrow\) ĐKXĐ: \(x\ne\pm1\)
b) \(\left(1\right)=\dfrac{x-3}{3x-3}\) (2)
c) Thay \(x=-3;x=1\) vào (2) ta có: \(\left\{{}\begin{matrix}B=\dfrac{-3-3}{3.\left(-3\right)-3}=\dfrac{1}{2}\\B=\dfrac{1-3}{3.1-3}=0\end{matrix}\right.\)
d) \(B=5\Rightarrow\dfrac{x-3}{3x-3}=5\Leftrightarrow x-3=15x-15\Leftrightarrow x=\dfrac{6}{7}\)
Cho biểu thức: A=2x+20/x^2-25+1/x+5+2/x-5
a. Tìm điều kiện xác định của A.
b. Rút gọn biểu thức A.
c. Tính giá trị của biểu thức A khi x = 9.
d. Tìm x để A= –3