Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Panda 卐
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 21:16

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

Tiến Hoàng Minh
Xem chi tiết
Vũ Mai Phương
Xem chi tiết
Nguyễn Thu	Hiền
22 tháng 4 2022 lúc 16:48

(x + 1) ^ 2 + |x - 1| = x ^ 2 + 4

ó/x-1/=x^2+4-(x+1)^2

ó/x-1/=x^2+4-x^2-2x-1

ó/x-1/=-2x+3

Nếu x-10 óx1 thì /x-1/=x-1

Ta có pt : x-1=-2x+3

óx+2x=3+1

ó3x=4

óx=4/3(t/m)

Nếu x-1 <0 óx<1 thì /x-1/=1-x

Ta có pt :1-x=-2x+3

ó-x+2x=3-1

óx=2(loại)

Vậy pt trình có nghiệm là x=4/3

Nguyễn Thu	Hiền
22 tháng 4 2022 lúc 16:51

bn oi  "ó " là dấu khi và chỉ khi ("<=>") , do tải lên bị lỗi nên nó như zậy . sorry nhé !

Yen Nhi
24 tháng 4 2022 lúc 21:30

\(\left(x+1\right)^2+\left|x-1\right|=x^2+4\)

\(\Leftrightarrow x^2+2x+1+\left|x-1\right|=x^2+4\)

\(\Leftrightarrow x^2+2x+1-x^2-4+\left|x-1\right|=0\)

\(\Leftrightarrow\left(x^2-x^2\right)+2x+\left(1-4\right)+\left|x-1\right|=0\)

\(\Leftrightarrow2x+3+\left|x-1\right|=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3+x-1=0\\2x-x-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)

Huyền Nguyễn
Xem chi tiết
Songoku
23 tháng 2 2021 lúc 17:53

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
23 tháng 2 2021 lúc 19:49

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
23 tháng 2 2021 lúc 19:52

Bài 2.

a) \(\frac{x}{x+1}-1=\frac{3}{2}x\)

ĐKXĐ : x khác -1

<=> \(\frac{x}{x+1}-\frac{x+1}{x+1}=\frac{3}{2}x\)

<=> \(\frac{-1}{x+1}=\frac{3x}{2}\)

=> 3x( x + 1 ) = -2

<=> 3x2 + 3x + 2 = 0

Vi 3x2 + 3x + 2 = 3( x2 + x + 1/4 ) + 5/4 = 3( x + 1/2 )2 + 5/4 ≥ 5/4 > 0 ∀ x

=> phương trình vô nghiệm

b) \(\frac{4x}{x-2}-\frac{7}{x}=4\)

ĐKXĐ : x khác 0 ; x khác 2

<=> \(\frac{4x^2}{x\left(x-2\right)}-\frac{7x-14}{x\left(x-2\right)}=\frac{4x^2-8x}{x\left(x-2\right)}\)

=> 4x2 - 7x + 14 = 4x2 - 8x

<=> 4x2 - 7x - 4x2 + 8x = -14

<=> x = -14 ( tm )

Vậy phương trình có nghiệm x = -14

Khách vãng lai đã xóa
I‘am Ko Biệt
Xem chi tiết
Darlingg🥝
4 tháng 12 2021 lúc 11:26

| x - 2 |.( x - 1 ).( x + 1 ).( x + 2 ) = 4

Bỏ dấu tuyệt đối => 2 TH xảy ra

TH1:| x - 2 |.( x - 1 ).( x + 1 ).( x + 2 ) = 4

<=>(x-2).(x-1).(x+1).(x+2)=4

<=> (x-2).(x+2).(x-1)(x+1)=4

<=> (x2- 4).(x2- 1)=4

<=>x4- x2 - 4x2 + 4 =4

<=> x4 - 5x2 +4-4=0

<=> x4 - 5x2= 0

<=>x2 ( x2 - 5 ) =0

<=> 2 TH

*x2=0=> x=0

*x2- 5 =0 => x2\(\pm\sqrt{5}\)=> x=\(\sqrt{5}\) hoặc x=\(-\sqrt{5}\)

Vậy x=0 hoặc x=\(\sqrt{5}\); x=-\(\sqrt{5}\)

TH2:| x - 2 |.( x - 1 ).( x + 1 ).( x + 2 ) = 4

<=>(2-x).(x-1).(x+1).(x+2)=4 ( TH này là dấu - đằng trc)

<=>(2-x).(2+x).(x-1)(x+1)=4

<=>(4 - x2). (x2 - 1) =4

<=> 4x- 4 - x4 + x2 - 4 =0

<=> 5x- x4 - 8 =0

<=> 5x2 - x4 = 8

Đặt x2 = t 

-t2+5t-8 = -(t- 5t + 8)

Ta có: (t- 5t + 8)

=t2 - 5t +\(\frac{25}{4}+\frac{7}{4}\)

=(t2 - 5t + \(\left(\frac{5}{2}\right)^2\)) + \(\frac{7}{4}\)

= (t+\(\frac{5}{2}\))2 + \(\frac{7}{4}\)

Vì: (t+\(\frac{5}{2}\))  0  với mọi t

=> (t+\(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0  với mọi t

=> t2 - 5t + 8  > 0 với mọi t

=>-(t- 5t + 8) < 0 với mọi t 

=> o có gt nào tm t => PT vô nghiệm

Loại TH 2

Vậy \(\Leftrightarrow\hept{\begin{cases}x=0\\x=\sqrt{5};x=-\sqrt{5}\end{cases}}\)

 
Khách vãng lai đã xóa
Trịnh Quỳnh Nhi
Xem chi tiết
Bùi Thế Hào
10 tháng 11 2017 lúc 12:07

+/ TH1: x>=2 

PT <=> (x-2)(x-1)(x+1)(x+2)=4

<=> (x2-1)(x2-4)=4 <=> x4-x2-4x2+4=4  <=> x2(x2-5)=0 => \(\hept{\begin{cases}x=0\left(loại\right)\\x=-\sqrt{5}\left(loại\right)\\x=\sqrt{5}\end{cases}}\)

+/ TH2: x<2   

PT <=> (2-x)(x-1)(x+1)(x+2)=4  <=> (x2-1)(4-x2)=4 <=> -x4+x2+4x2-4=4  <=> x4-5x2+8=0  

<=> \(x^4-2.\frac{5}{2}x^2+\frac{25}{4}+\frac{7}{4}=0\)

<=> \(\left(x^2-\frac{5}{2}\right)^2+\frac{7}{4}=0\)

Nhận thấy: \(\left(x^2-\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)Với mọi x => PT vô nghiệm

Đáp số: \(x=\sqrt{5}\)

Nguyễn Thành Nhân
Xem chi tiết
Trần Hoàng Anh
Xem chi tiết

2\(\sqrt{x+2+\sqrt{x+1}}\) - \(\sqrt{x+1}\) = 4;  Đk \(x\ge\) -1

2\(\sqrt{\left(\sqrt{x+1}\right)^2+2\sqrt{x+1}+1}\) - \(\sqrt{x+1}\) = 4 

2\(\sqrt{\left(\sqrt{x+1}+1\right)^2}\) - \(\sqrt{x+1}\) = 4

2(\(\sqrt{x+1}\) + 1) -  \(\sqrt{x+1}\) = 4

2\(\sqrt{x+1}\) + 2  - \(\sqrt{x+1}\) = 4

  \(\sqrt{x+1}\)       = 4 - 2

   \(\sqrt{x+1}\)       = 2

    \(x+1\)      = 4

    \(x\)              = 4 - 1

       \(x\)            = 3

Nguyễn Đức Trí
19 tháng 7 2023 lúc 21:32

\(...\Rightarrow2\sqrt[]{x+1+2\sqrt[]{x+1+1}}-\sqrt[]{x+1}=4\left(x\ge-1\right)\)

\(\Rightarrow2\sqrt[]{\left(\sqrt[]{x+1}+1\right)^2}-\sqrt[]{x+1}=4\)

\(\Rightarrow2|\sqrt[]{x+1}+1|-\sqrt[]{x+1}=4\left(1\right)\)

Nếu \(\sqrt[]{x+1}+1\ge0\Rightarrow x\ge-1\)

\(\left(1\right)\Rightarrow2\sqrt[]{x+1}+1-\sqrt[]{x+1}=4\)

\(\Rightarrow\sqrt[]{x+1}=3\Rightarrow x+1=9\Rightarrow x=8\)

Nếu \(\sqrt[]{x+1}+1\le0\Rightarrow x\in\varnothing\)

Vậy \(x=8\)

Linh Chi
Xem chi tiết