Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thảo Hiền
Xem chi tiết
KratosMC
Xem chi tiết
Phạm Thị Thùy Linh
28 tháng 3 2019 lúc 20:36

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-\)\(2bc\ge0\)

\(\Rightarrow a^2-2ab+b^2+a^2-2ac+c^2\)\(+b^2-2bc+c^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)( luôn đúng với mọi a,b,c) đpcm

chúc bạn học tốt. mk cũng 2k5 nhé, kb mk

tth_new
29 tháng 3 2019 lúc 19:59

Điều cần chứng minh tương đương với:

\(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đúng)

Suy ra đpcm.

Nguyễn Thị Thảo Hiền
Xem chi tiết
123
1 tháng 11 2015 lúc 8:14

a^2-b^2-c^2-ab-ac-bc

=2a^2-2b^2-2c^2-2ab-2ac-2bc

=(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)

=(a-b)^2+(b-c)^2+(a-c)^2

Ta có (a-b)^2 lớn hơn 0 hoặc bằng 0.        (b-c)^2 lớn hơn hoặc bằng 0

           (a-c)^2 lớn hơn hoặc bằng 0

=>(a-b^2+(b-c)^2+(a-c)^2 lớn hơn hoặc bằng 0

vậy a^2+b^2+c^2-ab-ac-bc lớn hơn hoặc bằng 0

           

Nguyễn Thế Anh Vũ6a
10 tháng 3 2019 lúc 9:27

bạn trần ngọc mai sai rồi vì dấu "=" xảy ra <=>a=b=c mà đề bài cho a,b,c khác nhau mà bạn.

Đoàn Thị Mỹ Tâm
Xem chi tiết
Không Tên
28 tháng 3 2018 lúc 22:33

        \(\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

     \(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra   \(\Leftrightarrow\)\(a=b=c\)

Trần Ngọc Mỹ Duyên
Xem chi tiết
Phan Nghĩa
5 tháng 8 2020 lúc 12:52

\(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(< =>2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(< =>\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)\ge0\)

\(< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng mịnh

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
5 tháng 8 2020 lúc 15:22

\(a^2+b^2+c^2-ab-ac-bc\ge0\)(*)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)( Đúng )

Vậy (*) đúng

=> đpcm

Dấu " = " xảy ra <=> a = b = c 

Khách vãng lai đã xóa
Trần Ngọc Mỹ Duyên
5 tháng 8 2020 lúc 19:11

cảm ơn các cậu~

Khách vãng lai đã xóa
Trần Phúc Khang
Xem chi tiết
tth_new
26 tháng 8 2019 lúc 6:52

n là tham số hay sao ah? 

Trần Phúc Khang
26 tháng 8 2019 lúc 13:46

Anh quên mất  \(n\ge0\)

tth_new
26 tháng 8 2019 lúc 19:56

Với n = 1 đó là một kết quả rất quen thuộc:))  thôi em vào bài luôn, ko thì bị nhiều bạn bảo "nói linh tinh":v Em thử, ko chắc đâu nha, a thử check xem.

Theo nguyên lí Dirichlet, tồn tại ít nhất 2 trong 3 số a - n; b - n; c - n đồng dấu. Giả sử 2 số đó là a -n và b - n.

Thế thì \(\left(a-n\right)\left(b-n\right)\ge0\Rightarrow2abc\ge2acn+2bcn-2cn^2\)

Suy ra  \(LHS\ge n\left(a^2+b^2+c^2\right)+\left(2acn+2bcn-2cn^2\right)+n^3\)

\(=n\left(a^2+b^2\right)+nc^2+n^3-2cn^2+2n\left(ac+bc\right)\)

\(\ge2n\left(ab+bc+ca\right)+nc^2+n^3-2cn^2\)

\(=2n\left(ab+bc+ca\right)+n\left(c^2+n^2-2cn\right)\)

\(=2n\left(ab+bc+ca\right)+n\left(c-n\right)^2\ge2n\left(ab+bc+ca\right)=RHS\)

Vậy ta có đpcm.

Đẳng thức xảy ra khi \(a=b=c=n\)

Ngu Ngu Ngu
Xem chi tiết
Bá đạo sever là tao
19 tháng 7 2017 lúc 12:33

có 1 cách mà xài SOS xấu lắm chơi ko :))

Thiên An
25 tháng 7 2017 lúc 9:53

tìm thấy rồi Tổng hợp kỹ thuật chứng minh bất đẳng thức-Tập 2: Luyện thi học sinh giỏi toán - Tổng hợp - Google Sách

Lê Minh Đức
25 tháng 7 2017 lúc 10:44

đây nhé có phải là

\(a-\frac{a\left(ab+bc+ca\right)}{a^2+3bc}=\frac{a^3+3abc-a\left(ab+bc+ca\right)}{a^2+3bc}=\frac{a\left(a-b\right)\left(a-c\right)}{a^2+3bc}+\frac{3abc}{a^2+3bc}\)

Đến khi cộng vào thì phải là \(3abc\left(\frac{1}{a^2+3bc}+\frac{1}{b^2+3ac}+\frac{1}{c^2+3ab}\right)\ge\frac{3abc.9}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)

Nguyễn Tấn Thịnh
Xem chi tiết
Nguyễn Hà Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 5 2022 lúc 23:41

a: Ta có: \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

b: ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)