với mọi số a,b,c không đồng thời bằng nhauhay chứng minh 
hay chung minh \(a^2+b^2+c^2-ab-ac-bc\ge0\)
a/ Với mọi số a, b, c không đồng thời bằng nhau, hãy chứng minh:
a2 + b2 + c2 - ab - ac - bc ≥ 0
Với mọi số a, b, c không đồng thời bằng nhau, hãy chứng minh:
a2 + b2 + c2 - ab - ac - bc ≥ 0
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-\)\(2bc\ge0\)
\(\Rightarrow a^2-2ab+b^2+a^2-2ac+c^2\)\(+b^2-2bc+c^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)( luôn đúng với mọi a,b,c) đpcm
chúc bạn học tốt. mk cũng 2k5 nhé, kb mk
Điều cần chứng minh tương đương với:
\(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đúng)
Suy ra đpcm.
a/ Với mọi số a, b, c không đồng thời bằng nhau, hãy chứng minh:
a2 + b2 + c2 - ab - ac - bc ≥ 0
a^2-b^2-c^2-ab-ac-bc
=2a^2-2b^2-2c^2-2ab-2ac-2bc
=(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)
=(a-b)^2+(b-c)^2+(a-c)^2
Ta có (a-b)^2 lớn hơn 0 hoặc bằng 0. (b-c)^2 lớn hơn hoặc bằng 0
(a-c)^2 lớn hơn hoặc bằng 0
=>(a-b^2+(b-c)^2+(a-c)^2 lớn hơn hoặc bằng 0
vậy a^2+b^2+c^2-ab-ac-bc lớn hơn hoặc bằng 0
bạn trần ngọc mai sai rồi vì dấu "=" xảy ra <=>a=b=c mà đề bài cho a,b,c khác nhau mà bạn.
Chứng minh rằng \(^{\left(a+b\right)^2-4ab\ge0}\)với mọi a,b
Chứng minh rằng \(a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\)\(a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
\(a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Đề: Với mọi a, b, c Đề: Với mọi a, b, c không đồng thời bằng nhau, hãy chứng minh:
a2 + b2 + c2 - ab - ac - bc lớn hơn hoặc bằng 0
Mọi người ơi, cố giúp mk nhé. Mặc dù là nghỉ dịch, nhưng mk phải hok thêm online, nên có bài ko hỉu. Mong mn giúp đỡ mk.~
\(a^2+b^2+c^2-ab-bc-ca\ge0\)
\(< =>2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(< =>\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)\ge0\)
\(< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)*đúng*
Vậy ta có điều phải chứng mịnh
\(a^2+b^2+c^2-ab-ac-bc\ge0\)(*)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)( Đúng )
Vậy (*) đúng
=> đpcm
Dấu " = " xảy ra <=> a = b = c
cảm ơn các cậu~
Bài bất đẳng thức hay
Với \(a,b,c\ge0\)
Chứng minh rằng \(n\left(a^2+b^2+c^2\right)+2abc+n^3\ge2n\left(ab+bc+ac\right)\)
Với n = 1 đó là một kết quả rất quen thuộc:)) thôi em vào bài luôn, ko thì bị nhiều bạn bảo "nói linh tinh":v Em thử, ko chắc đâu nha, a thử check xem.
Theo nguyên lí Dirichlet, tồn tại ít nhất 2 trong 3 số a - n; b - n; c - n đồng dấu. Giả sử 2 số đó là a -n và b - n.
Thế thì \(\left(a-n\right)\left(b-n\right)\ge0\Rightarrow2abc\ge2acn+2bcn-2cn^2\)
Suy ra \(LHS\ge n\left(a^2+b^2+c^2\right)+\left(2acn+2bcn-2cn^2\right)+n^3\)
\(=n\left(a^2+b^2\right)+nc^2+n^3-2cn^2+2n\left(ac+bc\right)\)
\(\ge2n\left(ab+bc+ca\right)+nc^2+n^3-2cn^2\)
\(=2n\left(ab+bc+ca\right)+n\left(c^2+n^2-2cn\right)\)
\(=2n\left(ab+bc+ca\right)+n\left(c-n\right)^2\ge2n\left(ab+bc+ca\right)=RHS\)
Vậy ta có đpcm.
Đẳng thức xảy ra khi \(a=b=c=n\)
Chứng minh rằng với mọi số thực không âm \(a,b,c\) thỏa mãn không có hai số nào trong chúng có thể đồng thời bằng \(0\), bất đẳng thức sau luôn được thỏa mãn:
\(\frac{a}{a^2+3bc}+\frac{b}{b^2+3ca}+\frac{c}{c^2+3ab}\le\frac{\left(a+b+c\right)^3}{4\left(ab+bc+ca\right)^2}\)
có 1 cách mà xài SOS xấu lắm chơi ko :))
tìm thấy rồi Tổng hợp kỹ thuật chứng minh bất đẳng thức-Tập 2: Luyện thi học sinh giỏi toán - Tổng hợp - Google Sách
đây nhé có phải là
\(a-\frac{a\left(ab+bc+ca\right)}{a^2+3bc}=\frac{a^3+3abc-a\left(ab+bc+ca\right)}{a^2+3bc}=\frac{a\left(a-b\right)\left(a-c\right)}{a^2+3bc}+\frac{3abc}{a^2+3bc}\)
Đến khi cộng vào thì phải là \(3abc\left(\frac{1}{a^2+3bc}+\frac{1}{b^2+3ac}+\frac{1}{c^2+3ab}\right)\ge\frac{3abc.9}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)
Câu 3 : Cho \(a,b,c\in Z^+\) đôi một khác nhau và đồng thoả mãn :
1. a là ước số của : b+c+bc
2. b là ước số của : a+c+ac
3. c là ước số của : a+b+ab
Chứng minh rằng : a,b,c không đồng thời là số nguyên tố.
a) Theo a2 + b2 + c2 = ab + bc + ca
Chứng minh rằng a = b = c
b) Chứng minh rằng x2 + x + 1, x2 - x + 1 luôn dương với mọi x \(\in\) R
c) Chứng minh rằng x2 -xy + y2 luôn dương với mọi xy không đồng thời bằng 0
a: Ta có: \(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
=>a=b=c
b: ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)