Tìm x
a, (x-2)^2-3x^2+6x=0
b, x^3+27+(x+3)(x-9)=0
B1 CMR biểu thức sau luôn dương với mọi x
A=x^2-6x+15
B=4x^2+4x+7
B2 CMR biểu thức sau luôn âm với mọi x
A=-9x^2+6x-2021
B=-2x^2+2x-7
B3 Tìm x
A) (x-2)^2 - (3-4x)^2 +15x^2=0
B) (x-3)(x^2+3x+9)-x(x+2)(2-x)=0
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
Tìm x
a) 4x(x-2) + x-2 = 0
b) (3x-1)^2 - 9 = 0
c) x^3 - 8 + (x-2)(x+1) = 0
`a)4x(x-2)+x-2=0`
`<=>(x-2)(4x+1)=0`
`<=>[(x-2=0),(4x+1=0):}`
`<=>[(x=2),(x=-1/4):}`
Vậy `S={2;-1/4}.`
`b)(3x-1)^3-9=0`
`<=>(3x-1-3)(3x-1+3)=0`
`<=>(3x-4)(3x+2)=0`
`<=>[(3x-4=0),(3x+2=0):}`
`<=>[(x=4/3),(x=-2/3):}`
Vậy `S={4/3;-2/3}.`
`c)x^3-8+(x-2)(x+1)=0`
`<=>(x-2)(x^2+2x+4)+(x-2)(x+1)=0`
`<=>(x-2)(x^2+3x+5)=0`
Mà `x^2+3x+5=(x+3/2)^2+11/4>=11/4>0`
`<=>x-2=0`
`<=>x=2`
Vậy `S={2}`
a) Ta có: \(4x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)
b)Ta có: \(\left(3x-1\right)^2-9=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Tìm x
a) 4x(x-2) + x - 2 = 0
b) (3x-1)^2 - 9 = 0
c) x^3 - 8 + (x-2)(x+1) = 0
a, \(4x\left(x-2\right)+x-2=0\Leftrightarrow\left(4x+1\right)\left(x-2\right)=0\Leftrightarrow x=-\dfrac{1}{4};x=2\)
b, \(\left(3x-1\right)^2-9=0\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\Leftrightarrow x=\dfrac{4}{3};x=-\dfrac{2}{3}\)
c, \(x^3-8+\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\ne0\right)=0\Leftrightarrow x=2\)
a) Ta có: \(4x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)
b) Ta có: \(\left(3x-1\right)^2-9=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Tìm x biết:
a) (2x - 3).(x + 5) = 0
b) 3x.(x - 2) - 7.(x - 2) = 0
c) 5x.(2x - 3) - 6x + 9 = 0
a)(2x-3)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy x=3/2 hoặc x=-5
a) \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)
b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)
c) \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)
a: Ta có: \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
b: Ta có: \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{3}\end{matrix}\right.\)
c: Ta có: \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Tìm x
a, x\(^2\)-64=0
b, 4x\(^2\)-4x+1=0
c, 9-6x+x\(^2\)=0
a) \(x^2-64=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
b) \(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
c) \(9-6x+x^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
a: Ta có: \(x^2-64=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
b: Ta có: \(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
hay \(x=\dfrac{1}{2}\)
c: ta có: \(x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
hay x=3
bài 1 tìm x
a)3x(x-3)+4x-12=0
b)(x+1)(x^2-x+1)-x^3+2x-=17
c)(x-3)(x+5)+(x-1)^2-6x^4y^2:3x^2y^2=15x
giúp mik vs nhanh ak cảm ơn nhìu!
a: \(3x\left(x-3\right)+4x-12=0\)
=>\(3x\left(x-3\right)+\left(4x-12\right)=0\)
=>\(3x\left(x-3\right)+4\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(3x+4\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b: Sửa đề:\(\left(x+1\right)\left(x^2-x+1\right)-x^3+2x=17\)
\(\Leftrightarrow x^3+1-x^3+2x=17\)
=>2x+1=17
=>2x=17-1=16
=>\(x=\dfrac{16}{2}=8\)
c: \(\left(x-3\right)\left(x+5\right)+\left(x-1\right)^2-6x^4y^2:3x^2y^2=15x\)
=>\(x^2+2x-15+x^2-2x+1-2x^2=15x\)
=>\(15x=-14\)
=>\(x=-\dfrac{14}{15}\)
tìm x
a) 3.(x-3)-4x+12=0
b)(x+2)^2-(x+2).(x-2) =0
c)x^3+3x=3x^2+1
d)2/3x.(x^2-4)=0
e)(2x-3)^2-(+5)^2=0
\(a,=3x-9-4x+12=-x+3=0\)
\(\Leftrightarrow x=3\)
Vậy ..
\(b,=\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy ..
\(c,=x^3-3x^2+3x-1=\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
Vậy ..
\(d,\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy ..
\(e,=\left(2x-3-5\right)\left(2x-3+5\right)=\left(2x-8\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)
Vậy ...
a) Ta có: 3(x-3)-4x+12=0
\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
hay x=3
Vậy: S={3}
b) Ta có: \(\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4=0\)
\(\Leftrightarrow4x=-8\)
hay x=-2
Vậy: S={-2}
c) Ta có: \(x^3+3x=3x^2+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: S={1}
d) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={0;2;-2}
a) 3.(x-3)-4x+12=0
=> 3x - 9 - 4x + 12 = 0
=> -x + 3 = 0
=> x = 3
b) (x+2)^2-(x+2).(x-2) =0
\(\Rightarrow\left(x+2\right)^2-x^2+4=0\)
\(\Rightarrow x^2+4x+4-x^2+4=0\)
=> 4x + 8 = 0
=> x = -2
c) x^3+3x=3x^2+1
\(\Rightarrow x^3+3x-3x^2-1=0\)
\(\Rightarrow\left(x-1\right)^3=0\)
=> x = 1
d) \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Rightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
=> x = 0 hoặc x = 2 hoặc x = -2
e) \(\left(2x-3\right)^2-5^2=0\)
\(\Rightarrow\left(2x-8\right)\left(2x+2\right)=0\)
=> x = 4 hoăc x = -1
bài 1 tìm x
a)6x^2-72x=0
b)-2x^4+16x=0
c)x(x-5)-(x-3)^2=0
d)(x-2)^3-(x-2)(x^2+2x+4)=0
a) \(6x^2-72x=0\)
\(6x\left(x-12\right)=0\)
\(6x=0\) hoặc \(x-72=0\)
*) \(6x=0\)
\(x=0\)
*) \(x-12=0\)
\(x=12\)
Vậy \(x=0;x=12\)
b) \(-2x^4+16x=0\)
\(-2x\left(x^3-8\right)=0\)
\(-2x=0\) hoặc \(x^3-8=0\)
*) \(-2x=0\)
\(x=0\)
*) \(x^3-8=0\)
\(x^3=8\)
\(x=2\)
Vậy \(x=0;x=2\)
c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)
\(x^2-5x-x^2+6x-9=0\)
\(x-9=0\)
\(x=9\)
d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(x^3-6x^2+12x-8-x^3+8=0\)
\(-6x^2+12x=0\)
\(-6x\left(x-2\right)=0\)
\(-6x=0\) hoặc \(x-2=0\)
*) \(-6x=0\)
\(x=0\)
*) \(x-2=0\)
\(x=2\)
Vậy \(x=0;x=2\)