Cho A(2;3), B(-3;5), C(0;2)
a) Lập phương trình đường cao AH của tam giác ABC.
b) Lập phương trình trung tuyến AM của tam giác ABC.
c) Lập phương trình đường trung bình song song với AB của tam giác ABC.
Cho A=2+2 mũ 2+ 2 mũ 3+...+2 mũ 2024
Chúng tỏ
a,A chia hết cho 2
b,A ko chia hết cho 4
c,A ko chia hết cho 6
d,A ko chia hết cho 8
Cho a = \(2+2^2+2^3+.....+2^{59}+2^{ }^{60}\)
a)Achia hết cho 2
B)a chia hết cho 3
C)a chia hết cho 7
hãy chứng minh a , b , c
a) \(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)
b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
c) \(A=2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^5+...+2^{58}\right)⋮7\)
a) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰
= 2.(1 + 2 + 2² + ... + 2⁵⁸ + 2⁵⁹) 2
Vậy A ⋮ 2
b) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰
= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Vậy A ⋮ 3
c) A = 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + ... + 2⁵⁸ + 2⁵⁹ + 2⁶⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy A ⋮ 7
Cho A=2+2^2+2^3+......+2^20.Chứng minh rằng a, A chia hết cho 2. b, A chia hết cho 3.c, A chia hết cho 5
a)A=2(1+2+2^2+...+2^19)
=>A chia hết cho 2
b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)
A=2(1+2)+2^3(1+2)+...+2^19(1+2)
A=2.3+2^3.3+...+2^19.3
A=3(2+2^3+...+2^19)
=>A chia hết cho 3
c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)
A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)
A=2.5+2^2.5+...+2^18.5
A=5(2+2^2+...+2^18)
=>A chia hết cho 5
Bài 16. Cho 2 3 20 A 2 2 2 ... 2 . Chứng minh rằng: a) A chia hết cho 2; b) A chia hết cho 3; c) A chia hết cho 5
nhanh nha đng cần
hahâhahâhahâhh làm tưcjccjcj nguyễn tập an ăn cút ahaaaa
A=2^2+2^3+...+2^20
a)Vì 2 mũ bao nhiêu cũng thành số chẵn nên A chia hết cho 2
b)A=(2^2+2^3)+(2^4+2^5)+...+(2618+2^19)+2^20
A=2^2.(2+1)+2^4.(2+1)+...+2^18.(2+1)+2^20
A=2^2.3+2^4.3+...+2^18.3+2^20
A=3.(2^2+2^4+...+2^18)+2^20
A=3.(2^2+2^4+...+2^18)+1048576
=> Vì 1+0+4+8+5+7+6=31 mà 31 không chia hết cho 3 nên tổng trên không chia hết cho 3
c) Tui lười làm quá
Cho A= 2 + 2 MŨ 2 + 2 MŨ 3+...+2 MŨ 20 . Chứng minh rằng: a) A chia hết cho 2; b) A chia hết cho 3; c) A chia hết cho 5
NHANH NHA DNG CẦN
MA NÀO GIÚP TUI ĐI
ĐI MÀ
CÔ MÀ KIỂM TRA TUI MÀ TUI KO LÀM Á LÀ CÔ HẠ HÀNH KIEMR CỦA TUI Á
Cho A=2+2^2+2^3+2^4+....+2^99+2^100, chứng minh rằng A chia hết cho 3, A chia hết cho 6, A chia hết cho 31
\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)
\(A=2\cdot3+...+2^{99}\cdot3\)
\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)
2 ý kia tương tự
Giải:
Đặt S=(2+2^2+2^3+...+2^100)
=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296
=2.31+26.31+...+296.31
=31.(2+26+...+296)\(⋮\)31
Ta có :
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{99}+2^{100})\)
=> \(A=2(1+2)+2^3(1+2)+...+2^{99}(1+2)\)
=> \(A=2.3+2^3.3+...+2^{99}.3\)
=> \(A=(2+2^3+...+2^{99}).3\)chia hết cho 3 ( 1 )
Ta lại có :
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
=> \(A=2(1+2+2^2+2^3+...+2^{98}+2^{99})\)chia hết cho 2 ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
A chia hết cho 2 . 3 hay A chia hết cho 6
Ta có :
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
=> \(A=\left(2+2^2+2^3+2^4+2^5\right)+....\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
=> \(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
=> \(A=2.31+...+2^{96}.31\)
=> \(A=\left(2+...+2^{96}\right)31\)chia hết cho 31
Cho A=2+2^2+2^3+...+2^179+2^180.Chứng tỏ:
a)A chia het cho 2
b)A chia het cho 7
c)A chia het cho 5
cho A= 2+2^3+2^4+....+2^100 a, chứng minh a+2 là lũy thừa của 2 . b, tìm x thuộc N biết a+2=2^x+1 c,chứng minh A CHIA HẾT cho A, A chia hết cho 31 và A không chia hết cho 4
Cho a = 1+2+2^2+2^3 + ... +2^41
a, Tính A
b, Chứng minh rằng A chia hết cho 3 , A chia hết cho 7
c , Tìm số dư của A khi chia cho 5
a) \(A=1+2+2^2+...+2^{41}\)
\(2A=2+2^2+...+2^{42}\)
\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)
\(A=2^{42}-1\)
b) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)
\(A=3+2^2\cdot3+...+2^{40}\cdot3\)
\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)
Vậy A ⋮ 3
__________
\(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)
\(A=7+...+2^{39}\cdot7\)
\(A=7\cdot\left(1+..+2^{39}\right)\)
Vậy: A ⋮ 7
c) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)
\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)
\(A=5\cdot\left(1+2+...+2^{39}\right)\)
A ⋮ 5 nên số dư của A chia cho 5 là 0
A = 1 + 2 + 22 + 23 + ... + 241
2A = 2 + 22 + 23 + 24 +...+ 242
a, 2A - A = 2 + 22 + 23 + 24+...+ 242 - (1 + 2 + 22 + 23 + ... + 241)
A = 2 + 22 + 23 + 24 +...+242 - 1 - 2 - 22 - 23 -...- 241
A = 242 - 1
b, A = 1 + 2 + 22 + 23 + ... + 241
A = 20 + 21 + 22 + 23 + ... + 241
Xét dãy số: 0; 1; 2;...; 41 dãy số này có: (41- 0):1 + 1 = 42 (số hạng)
Vậy A có 42 hạng tử. Nhóm hai số hạng liên tiếp của A với nhau thành một nhóm, vì 42: 2 = 21 nên
A = (20 + 21) + (22 + 23) +...+ (240 + 241)
A = 3 + 22.(1 + 2) +...+ 240.(1 + 2)
A = 3 + 22. 3 +...+ 240. 3
A = 3.(1 + 22 + ... + 240)
Vì 3 ⋮ 3 nên A = 3.(1 + 22 + ... + 240) ⋮ 3 (1)
Vì A có 42 hạng tử mà 42 : 3 = 14 vậy nhóm ba hạng tử liên tiếp của A thành 1 nhóm ta được:
A = (1 + 2 + 22) + (23 + 24 + 25) +...+ (239 + 240 + 241)
A = 7 + 23.(1 + 2 + 22) +...+ 239.(1 + 2 + 22)
A = 7 + 23.7 +...+ 239.7
A = 7.(1 + 23 +...+ 239)
Vì 7 ⋮ 7 nên A = 7.(1 + 23+...+ 239)⋮ 7 (2)
Kết hợp (1) và (2) ta có: A ⋮ 3; 7(đpcm)
c, A = 242 - 1
A = (24)10.22 - 1
A = \(\overline{...6}\)10.4 - 1
A = \(\overline{..4}\) - 1
A = \(\overline{...3}\)
Vậy A : 5 dư 3
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5