\(\dfrac{x}{4}\times\dfrac{16}{x}\)
\(A=\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}\times\dfrac{4x^2-8x+16}{x^2-4}\right)\div\dfrac{16}{x+2}\times\dfrac{x^2+3x+2}{x^2+x+1}\)
\(B=\dfrac{x^2+x-2}{x^3-1}\)
a) Tìm ĐKXĐ của A, B. Rút gọn A, B
b)Tìm GTLN của A+B
\(A=\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{65}+...+\dfrac{1}{99}=\dfrac{16}{x}\)
\(B=\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{19}{20}+\dfrac{29}{30}+\dfrac{41}{42}+\dfrac{55}{56}+\dfrac{x}{16}\)\(C=\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{9}\right)\times\left(1-\dfrac{1}{16}\right)\times...\times\left(1-\dfrac{1}{100}\right)=\dfrac{22}{x}\)
m.ng giúp em với
a: \(\Leftrightarrow\dfrac{32}{x}=\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{99}\)
=>32/x=1/3-1/5+1/5-1/7+...+1/9-1/11
=>32/x=1/3-1/11=8/33
=>x=32:8/33=132
b: \(\Leftrightarrow1-\dfrac{1}{6}+1-\dfrac{1}{12}+...+1-\dfrac{1}{56}=\dfrac{x}{16}\)
\(\Leftrightarrow6-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\right)=\dfrac{x}{16}\)
=>x/16=6-1/2+1/8=11/2+1/8=45/8=90/16
=>x=90
c: \(\Leftrightarrow\dfrac{22}{x}=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\)
=>22/x=1/2*2/3*...*9/10*3/2*4/3*...*11/10
=>22/x=1/10*11/2=11/20=22/40
=>x=40
Bài 1 Tìm \(x\)
a)\(\left(\dfrac{1}{2}\times x-3\right)\times\left(-\dfrac{1}{3}+x\right)=0\)
b)\(\dfrac{1}{2}\times x^2-\dfrac{1}{5}\times x=0\)
c)\(\dfrac{1`}{4}\times x=\dfrac{1}{16}\times x^2\)
d)\(9\times x^2=1\)
e)\(\left(x-5\right)^2=4\)
a) \(\left(\dfrac{1}{2}x-3\right)\left(-\dfrac{1}{3}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=0\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=0+3\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3:\dfrac{1}{2}\\x=0-\left(-\dfrac{1}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{1}{3}\end{matrix}\right.\)
d) \(9x^2=1\)
\(\Leftrightarrow x^2=1:9\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
\(\Leftrightarrow x^2=\left(\dfrac{1}{3}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
e) \(\left(x-5\right)^2=4\)
\(\Leftrightarrow\left(x-5\right)^2=2^2\)
\(\Leftrightarrow x-5=2\)
\(\Leftrightarrow x=2+5\)
\(\Leftrightarrow x=7\)
\(\dfrac{15}{16}\div\dfrac{5}{8}\times\dfrac{3}{4}\)
\(\dfrac{21}{4}\times\dfrac{16}{14}\times\dfrac{1}{2}\times\dfrac{8}{3}\)
\(\dfrac{15}{16}:\dfrac{5}{8}\times\dfrac{3}{4}\)
\(=\dfrac{15}{16}\times\dfrac{8}{5}\times\dfrac{3}{4}\)
\(=\dfrac{3}{2}\times\dfrac{3}{4}\)
\(=\dfrac{9}{8}\)
_________________
\(\dfrac{21}{4}\times\dfrac{16}{14}\times\dfrac{1}{2}\times\dfrac{8}{3}\)
\(=6\times\dfrac{4}{3}\)
\(=8\)
cho p=
\(\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\times\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]\div\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a.rút gọn p
b.cho \(x\times y=16\), xác định để x, y có giá trị nhỏ nhất
lm nhanh giúp mk nhé
a) Ta có: \(P=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(=\left(\dfrac{2}{\sqrt{xy}}+\dfrac{1}{x}+\dfrac{1}{y}\right):\dfrac{x\sqrt{x}+y\sqrt{x}+x\sqrt{y}+y\sqrt{y}}{x\sqrt{xy}+y\sqrt{xy}}\)
\(=\left(\dfrac{x+2\sqrt{xy}+y}{xy}\right):\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
a) Đk:\(x>0;y>0\)
\(P=\left[\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}.\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{x\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{xy}+y\sqrt{xy}}\)
\(=\left[\dfrac{2}{\sqrt{xy}}+\dfrac{x+y}{xy}\right]:\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)
\(=\dfrac{2\sqrt{xy}+x+y}{xy}:\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}.\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b) \(xy=16\Leftrightarrow x=\dfrac{16}{y}\)
\(P=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=\dfrac{1}{\sqrt{\dfrac{16}{y}}}+\dfrac{1}{\sqrt{y}}=\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\)
Áp dụng AM-GM có:
\(\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\ge2\sqrt{\dfrac{\sqrt{y}}{4}.\dfrac{1}{\sqrt{y}}}=1\)
\(\Rightarrow P\ge1\)
Dấu "=" xảy ra khi \(y=4\Rightarrow x=4\)
Vậy x=y=4 thì P đạt GTNN là 1
Bài 2: Tìm x:
a)\(\dfrac{x-1}{27}\)=\(\dfrac{-3}{1-x}\) c)\(3\times x=2\times y\) và\(x-2\times y=8\)
b)\(\dfrac{4}{5}\)-\(\left|x-\dfrac{1}{2}\right|\)=\(\dfrac{3}{4}\) d)\(\dfrac{x-1}{2005}\)=\(\dfrac{3-y}{2006}\) và x-4009=y
a: \(\Leftrightarrow\left(x-1\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
Cho:
\(A=\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}\times\dfrac{4x^2-4x+16}{x^2-4}\right):\dfrac{16}{x+2}\)
\(B=\dfrac{x^2+x-2}{x^3-1}\)
a,Rút gọn A,B
b,Với giá trị nào của x thì A+B có GTLN
Tìm x biết
a)\(\dfrac{2}{\left(x+2\right)\times\left(x+4\right)}+\dfrac{4}{\left(x+4\right)\times\left(x+8\right)}+\dfrac{6}{\left(x+8\right)\times\left(x+14\right)}=\dfrac{x}{\left(x+2\right)\times\left(x+14\right)}\)
Lời giải:
PT \(\Leftrightarrow \frac{(x+4)-(x+2)}{(x+2)(x+4)}+\frac{(x+8)-(x+4)}{(x+4)(x+8)}+\frac{(x+14)-(x+8)}{(x+8)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{12}{(x+2)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Rightarrow x=12\) (thỏa mãn)
Vậy......
a) \(\dfrac{-2}{15}\times x=\dfrac{-2}{7}\) b) \(\dfrac{7}{-5}\times x=-3\) c) \(-\dfrac{4}{9}x=\dfrac{1}{2}\) d) \(\dfrac{8}{3}\div x=\dfrac{-3}{8}\)
e) \(x\div\dfrac{3}{-4}=-12\) f) \(\left(-1\right)\div x=\dfrac{-3}{7}+\dfrac{4}{5}\) g)\(\dfrac{4}{11}x-\dfrac{1}{3}=\dfrac{2}{5}\) i) \(\dfrac{-6}{7}-\dfrac{1}{5}x=-4\)
j) \(\dfrac{1}{2}+\dfrac{2}{3}\div7=\dfrac{-1}{3}\) k) \(\dfrac{-5}{2}+x\div7=\dfrac{-1}{3}\) L) \(\dfrac{-3}{2}-\dfrac{1}{4}\div x=-1\)
a: =>x*2/15=2/7
=>x=2/7:2/15=2/7*15/2=15/7
b: x=3:7/5=15/7
c: x=-1/2:4/9=-1/2*9/4=-9/8
d: x=-8/3:3/8=-64/9
g: =>4/11x=2/5+1/3=6/15+5/15=11/15
=>x=11/15:4/11=121/60
l: =>1/4:x=1-3/2=-1/2
=>x=-1/4:1/2=-1/4*2=-1/2
k: =>x:7=-1/3+5/2=-2/6+15/6=13/6
=>x=91/6