Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranthuylinh
Xem chi tiết
An Thy
31 tháng 5 2021 lúc 9:51

a) Gọi pt đường thẳng (d) là : \(y=ax+b\left(a\ne0\right)\)

Vì (d) có hệ số góc là 2 \(\Rightarrow a=2\Rightarrow y=2x+b\)

Vì đường thẳng d đi qua điểm \(M\left(-1;3\right)\)

\(\Rightarrow3=-2+b\Rightarrow b=5\Rightarrow y=2x+5\)

b) Gọi pt đường thẳng d là \(y=ax+b\left(a\ne0\right)\)

Vì \((d)\parallel (d')\Rightarrow a=2\Rightarrow y=2x+b\)

Vì đường thẳng d đi qua điểm \(M\left(3;5\right)\)

\(\Rightarrow5=6+b\Rightarrow b=-1\Rightarrow y=2x-1\)

Gia HuyHuy
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 13:53

a: Phương trình hoành độ giao điểm là:

2x+1=x+1

=>2x-x=1-1

=>x=0

Thay x=0 vào y=x+1, ta được:

y=0+1=1

=>A(0;1)

b: Vì (d4) có hệ số góc là -4 nên (d4): y=-4x+b

Thay x=0 và y=1 vào (d4), ta được:

b-4*0=1

=>b=1

=>y=-4x+1

c: Vì (d5)//(d6) nên (d5): y=0,5x+a
Thay x=0 và y=1 vào (d5), ta được:

a+0,5*0=1

=>a=1

=>y=0,5x+1

d: Thay x=0 và y=1 vào (d3), ta được:

0*(m+1)+2m-1=1

=>2m-1=1

=>2m=2

=>m=1

Hà Kiều Anh
Xem chi tiết
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
Minh Nhân
3 tháng 6 2021 lúc 15:32

c) 

(d) vuông góc với (d') : y = 2x 

=> (d) có dạng : y = -2x + b 

(d) đi qua M (3,5) : 

5 = (-2) . 3 + b 

=> b = 10

(d) : y = -2x + 10 

Minh Nhân
3 tháng 6 2021 lúc 15:36

d) 

Gọi : hàm số có dạng : y = ax + b 

Hàm số đi qua điểm A ( 1,2) , B(2,1) nên : 

\(\left\{{}\begin{matrix}2=a+b\\1=2a+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)

Minh Nhân
3 tháng 6 2021 lúc 15:38

e) 

(d) đi qua gốc tọa độ O : 

=> d : y = ax 

(d) đi qua điểm A(1;2) nên : 

2 = a * 1 

=> a = 2 

(d) : y = 2x 

 

Phạm Thị Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 22:27

a: Vì (d) đi qua A(1;2) và B(4;5) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=2\\4a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-3\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

Cố Tử Thần
Xem chi tiết