Tính
\(\dfrac{7x+2}{3xy^2}\times\dfrac{14x+4}{x^2y}\)
Hãy làm các phép chia sau :
a) \(\dfrac{7x+2}{3xy^3}:\dfrac{14x+4}{x^2y}\)
b) \(\dfrac{8xy}{3x-1}:\dfrac{12xy^3}{5-15x}\)
c) \(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)
d) \(\left(4x^2-16\right):\dfrac{3x+6}{7x-2}\)
e) \(\dfrac{3x^3+3}{x-1}:\left(x^2-x+1\right)\)
GHPT sau: \(\left\{{}\begin{matrix}\dfrac{25}{9}+\sqrt{9x^2-4}=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{18x}{y^2-2y+2}+25y\right)\\7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\end{matrix}\right.\)
Rút gọn phân thức:
\(a,\dfrac{x^2-x-6}{x^2+7x+10}\)
\(b,\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(\frac{x^2-x-6}{x^2+7x+10}\)
\(=\frac{x^2-3x+2x-6}{x^2+5x+2x+10}=\frac{x.\left(x-3\right)+2.\left(x-3\right)}{x.\left(x+5\right)+2.\left(x+5\right)}\)
\(=\frac{\left(x+2\right).\left(x-3\right)}{\left(x+2\right).\left(x+5\right)}=\frac{x-3}{x+5}\)
câu 16: Kết quả của phép tính\(\dfrac{4x+5}{14x}+\dfrac{3x-5}{14x}\)bằng
\(A.\dfrac{7x}{14x}\) \(B.\dfrac{1}{2}\) \(C.\dfrac{1}{2x}\) D.2
\(\dfrac{4x+5}{14x}+\dfrac{3x-5}{14x}=\dfrac{4x+5+3x-5}{14x}=\dfrac{7x}{14x}=\dfrac{1}{2}\\ \Rightarrow B\)
Rút gọn phân thức:
\(a,\dfrac{x^2-x-6}{x^2+7x+10}\)
\(b,\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
a/ \(\dfrac{x^2-x-6}{x^2+7x+10}=\dfrac{x^2-3x+2x-6}{x^2+2x+5x+10}=\dfrac{x\left(x-3\right)+2\left(x-3\right)}{x\left(x+2\right)+5\left(x+2\right)}=\dfrac{\left(x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}=\dfrac{x-3}{x+5}\)
b/ \(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\dfrac{x^2+xy+2xy+2y^2}{x\left(x^2-y^2\right)+2y\left(x^2-y^2\right)}=\dfrac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x+2y\right)\left(x^2-y^2\right)}=\dfrac{\left(x+2y\right)\left(x+y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)
a) \(\dfrac{x^2-x-6}{x^2+7x+10}=\dfrac{\left(x+2\right)\left(x-3\right)}{\left(x+2\right)\left(x+5\right)}=\dfrac{x-3}{x+5}\)
b) \(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\dfrac{\left(x+y\right)\left(x+2y\right)}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}=\dfrac{x+y}{x^2-y^2}=\dfrac{x+y}{\left(x+y\right)\left(x-y\right)}=\dfrac{1}{x-y}\)
Phân tích đa thức sau thành nhân tử:
a)7x^3y-14x^2y^2+7xy^3
b)3x^2-3xy-5x+5y
c)x^2+7x+12
Vô đây xem: bài 1:phân tích đa thức thành nhân tửa)7x^3y-14x^2y+7xy^3b)3x^2-3xy-5x+5yc)x^2+7x+12giúp mình với - Hoc24
BT10: Thực hiện phép tính
\(a,-xyz^2\)\(-3xz.yz\)
\(b,-8x^2\)\(y-x.\left(xy\right)\)
\(c,4xy^2\) \(.x-\left(-12x^2y^2\right)\)
\(d,\dfrac{1}{2}x^2y^3-\dfrac{1}{3}x^2y.y^2\)
\(e,3xy\left(x^2y\right)-\dfrac{5}{6}x^3y^2\)
\(f,\dfrac{3}{4}x^4y-\dfrac{1}{6}xy.x^3\)
a: =-4xyz^2
b: =-9x^2y
c: =16x^2y^2
d: =1/6x^2y^3
e: =13/6x^3y^2
f: =7/12x^4y
a) -xyz² - 3xz.yz
= -xyz² - 3xyz²
= -4xyz²
b) -8x²y - x.(xy)
= -8x²y - x²y
= -9x²y
c) 4xy².x - (-12x²y²)
= 4x²y² + 12x²y²
= 16x²y²
d) 1/2 x²y³ - 1/3 x²y.y²
= 1/2 x²y³ - 1/3 x²y³
= 1/6 x²y³
e) 3xy(x²y) - 5/6 x³y²
= 3x³y² - 5/6 x³y²
= 13/6 x³y²
f) 3/4 x⁴y - 1/6 xy.x³
= 3/4 x⁴y - 1/6 x⁴y
= 7/12 x⁴y
BT10: Thực hiện phép tính
\(a,\dfrac{4}{5}y^2x^5-x^3.x^2y^2\)
\(b,-xy^3-\dfrac{2}{7}y^2.xy\)
\(c,\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz.y\)
\(d,15x^4+7x^4-20x^2.x^2\)
\(e,\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy.x^4\)
\(f,13x^2y^5-2x^2y^5+x^6\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
Rút gọn biểu thức : \(B=\dfrac{2}{x^2+2x}+\dfrac{3}{x^2+7x+10}+\dfrac{4}{x^2+14x+15}+\dfrac{1}{x+9}\)
\(=\dfrac{2}{x\left(x+2\right)}+\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{4}{\left(x+5\right)\left(x+9\right)}+\dfrac{1}{x+9}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+9}+\dfrac{1}{x+9}\)
=1/x