Tìm số tự nhiên để n2 + 8 phần n + 8 là số tự nhiên
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
tìm số tự nhiên n để \(\frac{n^2+7}{n+7}\) là số tự nhiên
bài 2: tìm số tự nhiên n để \(\frac{n^2+8}{n+8}\) là số tự nhiên
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
Tìm các số tự nhiên n để n2+n+2 là tích của hai hay nhiều số tự nhiên liên tiếp
Lời giải:
Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3)
Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$
$\Leftrightarrow 4n^2+4n+8=4a^2+4a$
$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$
$\Leftrightarrow 2=(a-n)(a+n+1)$
Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:
$a+n+1=2; a-n=1$
$\Rightarrow n=0$ (tm)
Tìm tất cả các số tự nhiên n để tồng 13/n + 8/n là số tự nhiên
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Tìm số tự nhiên n để phân số a=n+10/2n-8 có giá trị là 1 số tự nhiên
Tìm số tự nhiên n để:
n+8/n+2 là số tự nhiên
Tìm số tự nhiên n để n2–3n là số chính phương
Đặt \(n^2-3n=m^2\) với \(m\in N\)
\(\Rightarrow4n^2-12n=4m^2\)
\(\Rightarrow4n^2-12n+9=4m^2+9\)
\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)
\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)
2n-3-2m | -9 | -3 | -1 | 1 | 3 | 9 |
2n-3+2m | -1 | -3 | -9 | 9 | 3 | 1 |
n | -1 | 0 | -1 | 4 | 3 | 4 |
m | 2 | 0 | -2 | 2 | 0 | -2 |
Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn