tìm x
a, \(x^2-4x+\dfrac{1}{4}\)
b, \(8x^2-25\)
c, \(x^2+7x=8\)
d, \(x^3-3x=-27+9x\)
e, x(x-3)-7x=-21
f, \(x^3-2x^2+x-2=0\)
g, \(x^2-4x=-4\)
h, \(x^3-x^2+x=-1\)
\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)
\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)
tìm x
a) x²(x+1) - 4x² + 8x - 4 = 0
b) (x²+x)² + (x²+x) = 6
c)(x-1)(x²+x+1)- (x+1)(x²-x-1)+2(x-1)(x+1)=4+2(x+2)²
2 . ( x³ -1)-2x²(x+2x⁴) +(4x⁵+4)x=6. 3. (X²-4x+16)(x+4)-x(x+1)(x+2)+3x²= 0 4 . ( 8x +2 ) (1-3x) + ( 6x-1)(4x-10) =-50 Đề bài là tìm x nha mn Nhanh giúp mik vs
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0
⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)
Vậy pt vô nghiệm
*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm
Ta có: \(x^2-4x+7=0\)
\(\Leftrightarrow x^2-4x+4+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3=0\)
mà \(\left(x-2\right)^2+3\ge3>0\forall x\)
nên \(x\in\varnothing\)(đpcm)
Bài 1: rút gọn
a. ( x + 1)^2 - (x - 1)^2 - 3(x + 1)(x - 1)
b. 5(x +2)(x -2) - 1/2(6 - 8x)^2 + 17
c. (x^2 - 1)^3 - (x^4 + x^2 + 1)(x^2 - 1)
d. (x^4 - 4x^2 +9)(x^2 + 3) - (3 + x^2)^3
e. (x-3)^3 -(x - 3)(x^2 +3x + 9) + 6(x + 1)^2
Bài 2: tìm x
a. 25x^2 - 9 = 0
b. (x + 4)^2 - (x + 1) (x -1) = 16
c. (2x - 1)^2 + (x + 3)^2 - 5(x + 7)(x - 7) = 0
d. (x + 2)(x^2 - 2x + 4) - x(x^2 + 2)= 15
e. (x + 3)^3 - x(3x + 1)^2 + (2x + 1)(4x^2 - 2x + 1) = 28
g. (x^2 - 1)^3 - (x^4 + x^2 + 1)(x^2 -1) = 0
HELP ME!!!!!!!!
Bn gửi từng câu sẽ có nhều ng trl hơn nhé
tý mk giải câu a cho cần ko
a)x^3+4x+x-6=0
b)2x^3+3x^2-9x-10=0
c)x^3-x-6=0
d)(x^2-4x)^2+(8x-4)=-15
e)x(x+1)(x-1)(x+2)=24
g)(x^2-3x+3)(x^2-2x+3)=2x^2
h)(x+1)^4 x (x+3)^4=272
a)x^3+5x-6=0
x^3-x+6x-6
x(x^2-1)+6(x-1)=0
(x-1)(x(x+1)+6)
(x-1)(x^2+x+6)=0
=>x-1 hoac x^2+x+6
TH1
x-1=0
x=1
TH2
x^2+x+6=0
(x^2+2.1/2 x +1/4)-1/4+6=0
(x+1/2)^2=-23/4
vi (x+1/2)^2 >/0
=>pt vo nghiem
=>nghiem cua pt la 1
1. Rút gọn
a, A=(4x+3y)2 + (4x-3y)2
b,B=(x-23)-(x+2)3
c,C=(x+2y)2+2.(x+2y) (x-2y) + (x-2y)2
2. Tìm x
a, x2+12x+36=0
b,16x2-8x+1=0
c,x3+3x2+3x+1=0
2a) pt <=> (x + 6)^2 = 0
<=> x = -6
b) pt <=> (4x - 1)^2 = 0
<=> x = 1/4
c) pt<=> (x + 1)^3 = 0
<=> x = -1
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
1. Rút gọn
a, A=(4x+3y)2 + (4x-3y)2
b,B=(x-23)-(x+2)3
c,C=(x+2y)2+2.(x+2y) (x-2y) + (x-2y)2
2. Tìm x
a, x2+12x+36=0
b,16x2-8x+1=0
c,x3+3x2+3x+1=0
Bài 2:
a: Ta có: \(x^2+12x+36=0\)
\(\Leftrightarrow x+6=0\)
hay x=-6
b: Ta có: \(16x^2-8x+1=0\)
\(\Leftrightarrow4x-1=0\)
hay \(x=\dfrac{1}{4}\)
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)
\(=\left(x+2y+x-2y\right)^2\)
\(=4x^2\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)