Giả sử tam giác ABC có AB = 12cm , AC = 15cm , BC =9cm chứng minh tam giác ABC vuông
Cho tam giác ABC có AB =9cm, AC =12cm, BC = 15cm. Phân giác B và C cắt nhau tại I
a. Chứng minh: tam giác ABC vuông
b.Kẻ ID vuông với AB; IE vuông với BC; IF vuông với AC. Chứng minh ID =IF
c. CMR : AB + AC - BC = 2AD
C/m
Có AB = 9cm (gt)
AC = 12cm (gt)
BC = 15cm (gt)
=> BC là cạnh lớn nhất.
Có 52 = 225
Có 92 + 122 = 81 + 144 = 255
=> 92 + 122 = 152
=> AB2 + AC2 = BC2
=> \(\bigtriangleup\)ABC vuông tại A
b. Có phân giác góc B cắt góc B tại I
=> ID = IF (định lí)
Bài 1: ∆ABC vuông tại A, AH BC. Biết BH = 9cm, AH = 12cm, AC = 20cm. Tính AB và HC.Bài 2: ∆ABC có AB = 8cm, AC = 15cm, BC = 17cm.Chứng minh rằng: Tam giác ABC vuông tại A.Bài 3: Tam giác ABC cân tại A. M là trung điểm của BC. E thuộc AM.a. Chứng minh rằng: Tam giác EBC cân tại E.b. Biết AM = 8cm, BC = 12cm. Tính AB.Bài 4: Cho góc xOy = 600 . Ot là phân giác của góc xOy. M thuộc Ot. Kẻ MA Ox, MB Oy. Tia AM cắt Oy tại C, tia BM cắt Ox tại Da. ∆OAB là tam giác gì?b. ∆MAB là tam giác gì?c. ∆MCD là tam giác gì?Bài 5: Tam giác ABC vuông tại A, góc ABC = 600 . BI là phân giác của ABC. Kẻ IE BC.a. ∆ABE là tam giác gì?b. ∆IAE là tam giác gì?c. Biết AB = 3cm, BC = 5cm. Tính ACGiúp tớ với tớ cần gấp ạ
Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)
=> AM là trung tuyến
Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)
=> AM là đường cao (TC các đường trong tam giác cân)
Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)
EM là đường cao (AM là đường cao, E thuộc AM)
=> Tam giác EBC cân tại E
M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác AMB vuông tại M (AM \(\perp BM\))
AB2 = AM2 + BM2 (định lý Py ta go)
Thay số: AB2 = 82 + 62
<=> AB2 = 100
<=> AB = 10 (cm)
Vậy AB = 10 (cm)
Bài 1:
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AH2 = BH . HC (hệ thức lượng)
<=> 122 = 9 . HC
<=> HC = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)
Vậy HC = 16 (cm)
Ta có: BC = BH + HC = 9 + 16 = 25 (cm)
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AB2 = BH . BC (hệ thức lượng)
<=> AB2 = 9 . 25
<=> AB2 = 225
<=> AB = 15 (cm)
Vậy AB = 15 (cm)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
DO đó: ΔMHC=ΔMKB
c: Ta có: ΔMHC=ΔMKB
nên HC=KB
mà HC<MC
nên KB<MC
Cho tam giác ABC có AB= 9cm, AC= 12cm, BC= 15cm
a) Chứng minh: Tam giác ABC vuông tại A
b) Gọi D là trung điểm của BC. Vẽ tia Cx vuông góc với AC, tia AD cắt tia Cx tại E. Chứng minh: AB=CE
c) Chứng minh: Tam giác ADC = Tam giác EDB
d) Chứng minh Tam giác ABC= Tam giác CEA
Khỏi giải câu a,b cũng được
Tớ sẽ chứng minh câu a,b. Còn câu c,d thì cậu tự chứng minh được.Không cần GT, KL nhé.
a) Ta có: Theo định lý Pitagore đảo ta có:
\(9^2+12^2=81+144=225=15^2\)
\(\Rightarrow\) Tam giác ABC là tam giác vuông.
b) Ta có:
AB vuông góc với AC ; Cx vuông góc với AC
\(\Rightarrow\) AB song song với Cx
\(\Rightarrow\)ABD = DCE
Xét tam giác ABD và tam giác ECD có:
ABD = ECD ( CMT)
BD = EC ( gt )
ADB = EDC ( 2 góc đối đỉnh )
\(\Rightarrow\) tam giác ABD = tam giác ECD ( g.c.g )
\(\Rightarrow\) AB = EC ( 2 cạnh tương ứng )
Cho Tam Giác ABC có AB=9cm,BC=12cm,AC=15cm
a)Chứng Minh Tam Giác ABC là tam giác vuông
b)Trên Tia AB lấy điểm D sao cho B là trung điểm của AD.Tính độ dài đoạn CD?
a) Do 92+122=152 nên là tam giác vuông( định lý pytago)
b) Do B là trung điểm của đoạn AD nên AB và BD đối nhau. Suy ra AD vuông góc AC.
Lại thấy: B là trung điểm AD(gt) nên AD=2AB=18(cm)
Xét tan giác vuông ACD(cmt). Áp dụng định lí Pytago có:
AD2+AC2=DC2
<=>182+152=DC2
<=>324+225=DC2
<=>DC2=549(cm)
<=>DC=\(3\sqrt{61}\left(cm\right)\)
Vậy...
cho tam giác ABC vuông tại A , có AB=9cm, BC=15cm, AC =12cm a) so sánh các góc của tam giác ABC b) trên tia đối AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD . Chứng minh tam giác ABC=tam giác ADC từ đó suy ra tam giác BCD cânc) E là trung điểm của cạnh CD, BE cắt AC ở I .chứng minh DI đi qua trung
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C
Cho tam giác ABC có ba cạnh AB = 9cm, AC = 12cm, BC = 15cm
a) Chứng minh tam giác ABC vuông b) Tính đường cao AH, độ dài HB, HC
a) Có \(BC^2=15^2=225\)
\(AB^2+AC^2=9^2+12^2=81+144=225\)
do đó \(BC^2=AB^2+AC^2\)
Theo định lí Pythaogre đảo suy ra tam giác \(ABC\)vuông tại \(A\).
b) \(AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\left(cm\right)\)
\(HB=\frac{AB^2}{BC}=\frac{9^2}{15}=5,4\left(cm\right)\)
\(HC=BC-HB=15-5,4=9,6\left(cm\right)\)
Cho ABC có AB = 9cm ; AC = 12cm; BC = 15cm.
a) Chứng minh :tam giác ABC là tam giác vuông
b) Vẽ AH BC. Trên tia đối của tia HA lấy điểm D sao cho HA = HD. Chứng minh : BC là tia phân giác của góc ABD
c) Chứng minh : CD vuông góc vs BD
d) So sánh : AD và AB + AC.
Cho tam giác ABC có AB = 12cm, AC = 9cm, BC = 15cm. Kẻ đường cao AH.
a)Cm tam giác ABC là tam giác vuông. AH = ?
b)Kẻ HK vuông góc AC. Cm Tam giác KAH ~ Tam giác ABC
c)Cm : IK . AC = KH . BC