a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
DO đó: ΔMHC=ΔMKB
c: Ta có: ΔMHC=ΔMKB
nên HC=KB
mà HC<MC
nên KB<MC
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
DO đó: ΔMHC=ΔMKB
c: Ta có: ΔMHC=ΔMKB
nên HC=KB
mà HC<MC
nên KB<MC
Cho tam giác ABC vuông tại A có AB = 9 cm ; BC = 15 cm
a, Tính AC và so sánh các góc của tam giác ABC
b, Lấy D thuộc tia đối của AB sao cho A là trung điểm của BD. Chứng minh tam giác BCD cân
c, Lấy E là trung điểm BC và BK cắt AC tại M. Tính MC
Cho tam giác ABC có AB=9cm;AC=12cm;BC=15cm
a)Tam giác ABC là tam giác gì? Vì sao?
b) Vẽ trung tuyến AM của tam giác ABC,kẻ MH vuông góc với AC.Trên tia đối của tia MH lấy điểm K sao cho MK=MH.
CM: tam giác MHC = tam giác MKB.Suy ra BK // AC
c) BH cắt AM tại G.CM: G là trọng tâm 0 của tam giác ABC
Bài 6. Cho tam giác ABC vuông tại A a) Nếu AB = 9cm; BC = 15 cm. Tính AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD , Qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh tam giác ABC- tam giác DEC và tam giác BEF cân. c) So sánh BF và AD d) Tìm điều kiện của tam giác ABC để tam giác EFB đều
cho tam giác ABC vuông tại A.
a) cho AB=8cm, BC= 10cm, Tính AC?.
b) Tia phân giác của góc C cắt AB tại M. Từ M kẻ MH vuông góc với BC tại H. Chứng minh tam giác BCM= tam giác HCM.
c) Chứng minh AM< MB
Cho tam giác ABC có AB < AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Chứng minh:
a) Tam giác ABM = tam giác DCM
b) góc BAM > góc CAM
c) AM < (AB + AC + BC) : 2
d) AM < (AB+AC) : 2
cho tam giác abc có góc b =60o; ab=7cm; bc=15cm;vẽ ah vuông góc với bc(h thuộc bc). Lấy điểm m trên hc sao hm=hb
a)so sánh góc bac và góc acb
b)cm tam giác abm là tam giác đều
tam giác abc có phải là tam giác vuông không? vì sao
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng