a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Vậy: AC=12cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Vậy: AC=12cm
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:
a) Tam giác ABD = Tam giác EBD và DE vuông góc BC
b) BD là đường trung trực của đoạn thẳng AE
c) Ba điểm D; E; F thẳng hàng
d) Điểm D cách đều ba cạnh của tam giác AEI
Cho tam giác abc vuông tại a có ab = 3 cm, bc = 5 cm. Lấy điểm D trên cạnh bc sao cho bd=ba. Kẻ đường thẳng vuông góc với bc tại D cắt ac tại E
a) tính độ dài đoạn thẳng ac
b) Chứng minh BE là tia phân giác của abc
c) so sánh ae và ec
d) chứng minh be là đường trung trực của ad
Vẽ hình và giải giúp mình nha
cảm ơn
Bài 6. Cho tam giác ABC vuông tại A a) Nếu AB = 9cm; BC = 15 cm. Tính AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD , Qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh tam giác ABC- tam giác DEC và tam giác BEF cân. c) So sánh BF và AD d) Tìm điều kiện của tam giác ABC để tam giác EFB đều
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại M. Trên cạnh BC lấy điểm D sao cho BD=BA
a) CM: tam giác ABM = tam giác DBM suy ra góc MDB vuông
b) So sánh AC và BC. CM: MC>MA
......cứu mình với, đang cần gấp...
cho tam giác abc vuông tại a có ab=6cm, bc=10cm, ac=8cm.
a, so sánh các góc của tam giác abc.
b, trên tia đối của tia ab lấy điểm d sao cho a là trung điểm của đoạn thẳng bd. gọi k là trung điểm của cạnh bc, đường thẳng dk cắt cạnh ac tại m. tính mc.
c, đường trung trực d của đoạn thẳng ac cắt đường thẳng dc tại q . c/m ba điểm d, m, q thẳng hàng
..........vẽ hình nữa nhé........
Cho tam giác ABC vuông tại A. Kẻ phân giác BE của góc ABC (E AC). Trên BC lấy điểm D sao cho AB = BD. a)Chứng minh ΔABE = ΔDBE ; BC ⏊ ED b)Kéo dài DE cắt đường thẳng AB tại M. Chứng minh BM = BC c)Gọi N là trung điểm của MC. Chứng minh ba điểm B; E; N thẳng hàng.
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho BM=AB.
Vẽ tia phân giác BD ( D thuộc cạnh AC ) của góc B, BD cắt AM tại H. Chứng minh rằng :
a) ∆ABH=∆MBH
b) Tia DB là tia phân giác của .
c) Kéo dài DM cắt AB tại k. Chứng minh AK=MC và BD ^ CK.