2m + 2n = 2m+n
Tìm m,n nguyên dương thỏa mãn.
tìm x,y nguyên dương thỏa mãn:
2m - 2n = 256
\(2^m-2^n=2^8\)
\(\Rightarrow2^n.\left(2^m-n-1\right)=2^8\)
\(\Rightarrow2^m-n-1=2^8-n\)
dễ thấy......với 8-n khác 0 => vế trái lẻ (do m lớn hơn n) mà vế phải chẵn => vô nghiệm
\(\Rightarrow8-n=0\Rightarrow n=8\Rightarrow m-n=1\Rightarrow m=9\)
Vậy \(n=8;m=9\)
có bao nhiêu các cặp số guyên (m,n) thỏa mãn m^2+2n là số nguyên tố và 2m^2=n^2-2
Cho m; n thỏa mãn 2 m + n = 8 2 m + 2 n = 6 . Giá trị của m . n bằng
A. 1
B. 8
C. 2
D. 4
tìm m,n nguyên dương để 3m-1/2n và 3n-1/2m cùng là số nguyên dương
giúp mình với
Cho m, n là các số nguyên thỏa mãn m^2 + n^2 chia hết cho 5. Chứng minh tồn tại ít nhất một trong hai số 2m+n hoặc m+2n chia hết cho 5. nhanh có tick
Ta có:
( 2m + n ) . ( m + 2n ) = 2m . m + n . m + 2m . 2n + n . 2n
= 2m2 + mn + 4mn + 2n2
= 2 ( m2 + n2 ) + 5mn
Vì m2 + n2 chia hết cho 5 => 2 ( m2 + n2 ) chia hết cho 5 và 5mn chia hết cho 5
=> 2 ( m2 + n2 ) + 5mn chia hết cho 5
=> (2m + n ) ( m + 2n ) chia hết cho 5
=> Tồn tại ít nhất 1 trong hai số 2m + n hoặc m + 2n chia hết cho 5.
Cho các số nguyên m,n,p thỏa mãn 2m+n, 2n+p, 2p+m là các số chính phương. Biết rằng một trong ba số đó chia hết cho 3. Chứng minh rằng (m-n)(n-p)(p-m) chia hết cho 27
tìm m,n thỏa mãn:
a) 2m+2n=2m+n
tìm tất cả các số nguyên dương m,n thỏa mãn ; 9^m-3^m=n^4+2n^3+n^2+2n
Có bao nhiêu số nguyên dương m thỏa mãn phương trình :
\(9^{1+\sqrt{1-x^2}}-\left(m+2\right)3^{1+\sqrt{1-x^2}}+2m+1=0\) có nghiệm ?
\(1\le1+\sqrt{1-x^2}\le2\Rightarrow3\le3^{1+\sqrt{1-x^2}}\le9\)
Đặt \(3^{1+\sqrt{1-x^2}}=t\Rightarrow t\in\left[3;9\right]\)
Phương trình trở thành: \(t^2-\left(m+2\right)t+2m+1=0\)
\(\Leftrightarrow t^2-2t+1=m\left(t-2\right)\Leftrightarrow m=\dfrac{t^2-2t+1}{t-2}\)
Xét hàm \(f\left(t\right)=\dfrac{t^2-2t+1}{t-2}\) trên \(\left[3;9\right]\)
\(f'\left(t\right)=\dfrac{t^2-4t+3}{\left(t-2\right)^2}\ge0\) ; \(\forall t\in\left[3;9\right]\Rightarrow f\left(t\right)\) đồng biến trên khoảng đã cho
\(\Rightarrow f\left(3\right)\le f\left(t\right)\le f\left(9\right)\Rightarrow4\le m\le\dfrac{64}{7}\)
Có 6 giá trị nguyên của m