cho hình bình hành ABCD . qua A vẽ tia Ax cắt BD ở M, cắt BC ở N, cắt DC ở K.
a) so sánh \(\frac{MB}{MD}VỚI\frac{MA}{MK}\)
b)so sánh\(\frac{MB}{MD}VỚI\frac{MN}{MA}\)
c)chứng minh : MA2=MK.MN
Cho hình bình hành ABCD, qua A vẽ tia Ax cắt đường chéo BD ở M, cắt BC ở N và cắt tia CD ở K
a. So sánh \(\frac{MB}{MD}và\frac{MA}{MK};\frac{MB}{MD}và\frac{MN}{MA}\)
b. CM: MA2 = MN . MK
xét tam giác AMB đồng dạng với KMD ( góc góc ) cái này dễ bạn tự chứng minh được
suy ra \(\frac{MB}{MD}=\frac{AM}{KM}\) ( TÍCH CHẤT TAM GIÁC ĐỒNG DẠNG)
xét tam giác BMN động dạng với DMA ( góc góc )
suy ra \(\frac{BM}{DM}=\frac{NM}{MA}\) ĐIỀU CẦN PHẢI CHỨNG MINH
b) bạn xem lại câu 1 câu 2 rồi suy ra
từ 1 và 2 ta có
\(\frac{AM}{MK}=\frac{MN}{MA}=AM^2=MN.MK\) nhân chéo nó lên
cho hình bình hành ABCD, qua A vẽ tia Ax cắt BD ở M, BC ở N và CD ở K.
a) so sánh MB/ND và MA/MK ; MB/MD và MN/MA
b) chứng minh rằng MA2 = MN.MK
Mk cx ko bt àm ạn ạ
Cho hình bình hành ABCD,qua A vẽ tia Ax cắt đường chéo BD tại M, cắt BC tại N và cắt DC tại K.
a)So sánh BM/DM và MA/MK ; MB/MD và MN/MA
b)chứng minh MA^2=MNxMK
Cho hình bình hành ABCD, qua A ve tia Ax cắt đường chéo BD ở M, cắt BC tại N và cắt tia CD tại K
a. So sánh \(\dfrac{MB}{MD}và\dfrac{MA}{MK},\dfrac{MB}{MD}và\dfrac{MN}{MA}\)
b. CM: MA2 = MN . MK
Cho hình bình hành ABCD. Qua A vẽ tia Ax cắt BD tại M, cắt BC tai N và cắt CD ở K
a, So sánh tỉ số giữa \(\dfrac{MB}{MD}\) và \(\dfrac{MA}{MK}\); \(\dfrac{MB}{MD}\) và \(\dfrac{MN}{MA}\)
b, Chứng minh rằng : MA2= MN.MK
CHO HÌNH THANG ABCD (AB//CD). MỘT ĐƯỜNG THẲNG SONG SONG VỚI 2 ĐÁY, CẮT AD Ở M, CẮT BC Ở N
A) CM \(\frac{AM}{AD}=\frac{BN}{BC};\frac{MA}{MD}=\frac{NB}{NC}\)
B) CHO BIẾT \(\frac{MD}{MA}=\frac{m}{n}\).CM \(MN=\frac{mAB+nCD}{m+n}\)
Cho hình bình hành ABCD (AB//CD). Vẽ đường thẳng song song với cạnh AB, cắt cạnh AD ở M, cắt cạnh BC ở N.
Biết rằng\(\frac{DM}{MA}=\frac{CN}{NB}=\frac{m}{n}\)
Chứng minh rằng: MN=\(\frac{mAB+nCD}{m+n}\)
Cho hỏi là cung BC lớn hay cung nhỏ ạ
CHO HÌNH THANG ABCD (AB//CD). MỘT ĐƯỜNG THẲNG SONG SONG VỚI 2 ĐÁY, CẮT AD Ở M, CẮT BC Ở N
A) CM \(\frac{AM}{AD}=\frac{BN}{BC};\frac{MA}{MD}=\frac{NB}{NC}\)
B) CHO BIẾT \(\frac{MD}{MA}=\frac{m}{n}\).CM \(MN=\frac{mAB+nCD}{m+n}\)