Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thu Thảo
Xem chi tiết
Hà Tuấn Anh
Xem chi tiết
Phong Linh
10 tháng 6 2018 lúc 13:47

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

Phạm Thị Thủy Diệp
Xem chi tiết
Vương Thị Diễm Quỳnh
29 tháng 11 2015 lúc 19:39

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

Nguyễn Xuân Sáng
29 tháng 11 2015 lúc 19:44

Ta thấy : Tich của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3

Vì p-1 ; p ; p+1 là 3 số tự nhiên Liên tiếp

=> Trong 3 số trên luôn có 1 số chia hết cho 3

=> (p-1)(p+1) chia hết cho 3.      (1)

Vì p là số nguyên tố >3 => p là số lẻ

=> p-1 và p+1 là 2 số chẵn Liên tiếp

Mà tích của 2 số chămn Liên tiếp luôn chia  hết cho 8

=> (p-1)(p+1) chia hết cho 8.       (2)

Mà (3,8)=1

Từ (1) và (2) => (p-1)(p+1) chia hết cho (3.8) 

=> (p-1)(p+1) chia hết cho 24 (đpcm)

Nguyễn Phương Linh
Xem chi tiết
Trần Đăng Nhất
13 tháng 7 2017 lúc 15:04

P là nguyên tố > 3 => P không chia hết cho 2 và 3

Ta có P không chia hết cho 2

=> P-1 và P+1 là hai số chẵn liên tiếp => (P-1).(P+1) chia hết cho 8 (1)

Mặt khác P không chia hết cho 3 => P có dạng 3k+1 và 3k+2

+) Nếu P=3k+1 thì P-1=3k chia hết cho 3 => (P-1).(P+1) chia hết cho 3

+) Nếu P=3K+2 thì P+1 =3k+3 chia hết cho 3 => (P-1).(P+1) chia hết cho 3 (2)

Từ (1) và (2) =) (P-1).(P+1) chia hết cho 3 và 8 mà (3;8)=1

=> (P-1).(P+1) chia hết cho 24

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2017 lúc 6:56

Ta có p - 1 p p + 1   ⋮   3    mà (p, 3) = 1 nên

            p - 1 p + 1   ⋮   3                     (1)

 p là số nguyên tố lớn hơn 3 nên p là số lẽ, p – 1 và p + 1 là hai số chẳn liên tiếp , có một số là bội của 4 nên tích của chúng chia hết cho 8  (2)

Từ (1) và (2) suy ra (p – 1)(p + 1) chia hết cho 2 nguyên tố cùng nhau là 3 và 8

Vậy (p – 1)(p + 1) chia hết cho 24.

tran tan
Xem chi tiết
Zeref Dragneel
5 tháng 12 2015 lúc 20:26

Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:

A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.

kTa có: p = 3k + 1 hoặc 3k – 1 (h nguyên và k > 1) suy ra A chia hết cho 3.

Vậy A = (p – 1)(p + 1) chia hết cho 24

Thanh Hiền
5 tháng 12 2015 lúc 20:26

http://olm.vn/hoi-dap/question/18848.html

Bạn vào đây tham khảo nhé !

lê chí dũng
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
3 tháng 6 2015 lúc 9:34

trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3

=>(p-1)p(p+1) chia hết cho 3

(p;3)=1 =>(p-1)(p+1) chia hết cho 3

p là số nguyên tố >3 =>p=4k+1;4k+3

xét p=4k+1

=>(p-1)(p+1)=(4k+1-1)(4k+1+1)=4k(4k+2)=4k.2(2k+1)=8k(2k+1) chia hết cho 8  (1)

xét p=4k+3

=>(p-1)(p+1)=(4k+3-1)(4k+3+1)=(4k+2)(4k+4)=(2k+1)(k+1).2.4=(2k+1)(k+1).8 chia hết cho 8    (2)

từ (1) và (2) =>(p-1)(p+1) chia hết cho 8

vì(3;8)=1 =>(p-1)(p+1) chia hết cho 24

=>đpcm

Nguyễn Thị Ngọc Ánh
Xem chi tiết
Lê Nguyên Hạo
31 tháng 7 2016 lúc 20:48

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

96neko
27 tháng 3 2017 lúc 21:58

Ta có (p-1).(p+1)

p là số nguyên tố lớn hơn 3→ƯCLN(N;3)=1

mà p.(p-1).(p+1) chia hết cho 3

→(p-1).(p+1) chia hết cho 3 (1)

Mặt khác p là 1 số lẻ→p=2.k+1 (k thuộc Z)

→ (p-1).(p+1)=(2k+1-1).(2k+1+1)

=2k.(2k+2)

=2k.2.(k+1)

=4.k.(k+1) chia hết cho 8

→ (p-1).(p+1) chia hết cho 8 (2)

Từ (1) và (2) → (p-1).(p+1) chia hết cho 24

Nguyễn thị thanh  Trà
25 tháng 4 2017 lúc 19:02

P là số nguyên tố >3

Black Dragon
Xem chi tiết
❊ Linh ♁ Cute ღ
14 tháng 4 2018 lúc 20:39

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.